Author: Mori, Y.
Paper Title Page
THPAB024 Emittance Growth at Charge-Exchanging Multi-Turn Injection in KURRI FFAG 3747
 
  • T. Uesugi, Y. Ishi, Y. Kuriyama, Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  In the fixed field alternating gradient (FFAG) synchrotron in Kyoto university research reactor institute (KURRI), rapid beam loss of factor 100 is observed right after the injection. In the synchrotron, charge-exchanging multi-turn injection is adopted with a stripping foil located on the closed orbit of the injection energy. No bump orbit system is used and the injected beams escape from the foil according to the closed-orbit shift by acceleration. The particles hit the foil many times and that is why the emittance grows up during the injection. In this paper, simulation studies are done to estimate the emittance growth and beam losses. The scattering effect at the foil is modeled by GEANT4.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA100 Future Plans of ADS Proton Drivers at Kyoto University Research Reactor Institute 4695
 
  • Y. Ishi, Y. Kuriyama, Y. Mori, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The accelerator complex using FFAG synchrotrons at Kyoto University Research Reactor Institute has been operated for the ADS experiments connecting the 100 MeV proton beam line with the research reactor facility KUCA (Kyoto University Critical Assembly) since 2009. Number of neutrons produced through the nuclear spallation process strongly depends on the beam energy of the pri- mary protons. If the beam energy is increased from 100 MeV to 400 MeV, the number of neutrons corresponding to single primary proton is increased by a factor of 20. Therefore, the energy upgrade of the accelerator facility is desired by the reactor physicists. A new 400 MeV FFAG synchrotron has been designed. The results of the feasibility study of the 400 MeV ring will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)