Author: Montesano, S.
Paper Title Page
MOPAB007 Status of Crystal Collimation Studies at the LHC 84
SUSPSIK008   use link to see paper's listing under its alternate paper code  
 
  • R. Rossi, O. Aberle, O.Ø. Andreassen, M.E.J. Butcher, C.A. Dionisio Barreto, I. Lamas Garcia, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, A. Rijllart, W. Scandale, P. Serrano Galvez, G. Valentino
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
 
  Crystal collimation is a technique that relies on highly pure bent crystals to coherently deflect beam particles - through the channeling mechanisms - onto dedicated absorbers. Standard multi-stage collimation systems for hadron beams use amorphous materials as primary collimators and might be limited by nuclear interactions and ion fragmentation that are strongly suppressed in crystals. A crystal collimation setup was installed in the betatron cleaning insertion of the Large Hadron Collider (LHC) to demonstrate with LHC beams the feasibility of this concept and to compare its performance with that of the present system. Channeling was observed for the first time with 6.5 TeV beam and and plans for further crystal collimation beam tests at the LHC are discussed. Results of these first beam tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK048 Experimental Results of Crystal-Assisted Slow Extraction at the SPS 623
 
  • M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Kain, D. Mirarchi, S. Montesano, S. Petrucci, S. Redaelli, R. Rossi, W. Scandale, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
  • F.M. Addesa, G. Cavoto, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • F. Murtas
    INFN/LNF, Frascati (Roma), Italy
 
  The possibility of extracting highly energetic particles from the Super Proton Synchrotron (SPS) by means of silicon bent crystals has been explored since the 1990's. The channelling effect of a bent crystal can be used to strongly deflect primary protons and eject them from the synchrotron. Many studies and experiments have been carried out to investigate crystal channelling effects. The extraction of 120 and 270 GeV proton beams has already been demonstrated in the SPS with dedicated experiments located in the ring. Presently in the SPS, the UA9 experiment is performing studies to evaluate the possibility to use bent silicon crystals to steer particle beams in high energy accelerators. Recent studies on the feasibility of extraction from the SPS have been made using the UA9 infrastructure with a longer-term view of using crystals to help mitigate slow extraction induced activation of the SPS. In this paper, the possibility to eject particles into the extraction channel in LSS2 using the bent crystals already installed in the SPS is presented. Details of the concept, simulations and measurements carried out with beam are presented, before the outlook for the future is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)