Author: Marin, E.     [Marín, E.]
Paper Title Page
MOPIK077 Impact of Dynamical Stray Fields on CLIC 708
 
  • E. Marín, D. Schulte
    CERN, Geneva, Switzerland
  • B. Heilig
    MFGI, Budapest, Hungary
  • J. Pfingstner
    University of Oslo, Oslo, Norway
 
  In this paper we estimate the tolerances of stray-fields variations on the Compact Linear Collider (CLIC), discuss possible sources and propose several solutions. The Beam Delivery System (BDS) is the most sensitive system of CLIC to unwanted magnetic field variations, already variations of 1 nT would reduce the luminosity by 10% at wavelengths comparable to the BDS without considering any correction mechanism. Two sources of magnetic field variations are considered, natural and man-made. Precise magnetic field measurements at Earth's surface under a typical geomagnetic storm are presented. Additionally, stray field measurements have been conducted at CERN, to inspect B-field variations due to technical equipment in an accelerator environment. Different solutions are proposed to minimise the impact of stray fields on the CLIC performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK099 Tuning-Based Design Optimization of CLIC Final Focus System at 3 TeV 760
SUSPSIK047   use link to see paper's listing under its alternate paper code  
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  The tuning aims to mitigate static imperfections of the Final Focus System (FFS) for emittance preservation at the Interaction Point (IP). A simulation campaign on the nominal CLIC FFS at 3 TeV have shown the need of rethink the design in order to ease the tuning of the machine. The goal is to optimize the lattice in order to make the FFS more tolerant to misalignments by reducing the strength of the sextupoles. The tuning efficiency is promoted as figure of merit to find the optimal layout of the FFS. A comparative study of the tuning performances have been performed for two L* options.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK100 Beam Delivery System Optimization for CLIC 380 GeV 764
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  In the framework of the CLIC rebaselining, the Beam Delivery System (BDS) have been re-optimized for its initial stage at 380 GeV. Two BDS designs with L*=4.3 meters and L*=6 meters have been investigated. The optimization of the lattices and the beam parameters at the interaction point (IP) have been performed by taking into account their energy upgrade to 3 TeV and the tuning feasibility of the BDS in presence of static imperfections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK108 Tuning Simulations for the CLIC Traditional Beam Delivery System 788
 
  • R.M. Bodenstein, P. Burrows
    JAI, Oxford, United Kingdom
  • E. Marín, F. Plassard, R. Tomás
    CERN, Geneva, Switzerland
 
  As the design of the CLIC Beam Delivery System (BDS) evolves, tuning simulations must be performed on each of the proposed lattice designs to see which system achieves the highest luminosity in the most realistic manner. This work will focus on the tuning simulations performed on the so-called Traditional lattice design for the center-of-mass energy of 3 TeV. The lattice modifications required to target the most important aberrations and the latest tuning results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA130 CLIC Tuning Performance Under Realistic Error Conditions 2403
 
  • E. Marín, A. Latina, F. Plassard, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  In this paper we present the latest results regarding the tuning study of the baseline design of the CLIC Final Focus System. In previous studies, 90% of the machines reach 90% of the nominal luminosity, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, roll misalignments and strength errors are also included for both e- and e+ beamlines, making the study a more realistic one. First, second and third order knobs are implemented in the tuning procedure to target the most relevant beam size aberrations. In order to minimise the total number of luminosity measurements a simultaneous scan of various knobs has been developed to cope with the non-fully orthogonality of the knobs. The obtained results for single and double beam studies are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)