Author: Huening, M.     [Hüning, M.]
Paper Title Page
MOPAB044 X-Band TDS Project 184
 
  • B. Marchetti, R.W. Aßmann, B. Beutner, J. Branlard, F. Christie, R.T.P. D'Arcy, W. Decking, U. Dorda, J. Herrmann, M. Hoffmann, M. Hüning, O. Krebs, G. Kube, S. Lederer, F. Ludwig, F. Marutzky, D. Marx, J. Osterhoff, I. Peperkorn, S. Pfeiffer, F. Poblotzki, J. Rönsch-Schulenburg, J. Rothenburg, H. Schlarb, M. Scholz, S. Schreiber, M. Vogt, A. Wagner, T. Wilksen, K. Wittenburg
    DESY, Hamburg, Germany
  • M. Bopp, H.-H. Braun, P. Craievich, M. Pedrozzi, E. Prat, S. Reiche, K. Rolli, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  Based on the success of the X-Band Transverse Deflecting Structure (TDS) diagnostic at LCLS*, a collaboration between DESY, PSI and CERN has formed with the aim of developing and building an advanced modular X-Band TDS system. The designed TDS has the new feature of providing variable polarization of the deflecting field**. The possibility of changing the orientation of the streaking field of the TDS to an arbitrary azimuthal angle allows for 3D characterization of the phase space using tomographic methods***. Moreover the complete 6D characterization of the beam phase space is possible by combining this technique with quadrupole scans and a dipole spectrometer. As this new cavity design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field, the high precision tuning-free assembly procedures developed at PSI for the SwissFEL C-band accelerating structures will be used for the manufacturing****. The high-power rf system is based on the CERN-based X-band test stands. We summarize in this work the status of the projects and its main technical parameters.
* C. Behrens et al. , Nat. Comm. 4762 (2014).
** A. Grudiev, CLIC-note-1067 (2016).
*** D. Marx et al., contribution to this conference proceedings.
**** U. Ellenberger et al., FEL 2013, TUPS017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA058 Commissioning and Operation Experience of the 3.9 GHz System in the EXFEL Linac 999
 
  • C.G. Maiano, J. Branlard, M. Hüning, M. Omet, P. Pierini, E. Vogel
    DESY, Hamburg, Germany
  • A. Bosotti, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The European X-ray Free Electron Laser (EXFEL) injector linac hosts a 3.9~GHz module (AH1) for beam longitudinal phase space manipulation after the first acceleration stage, in order for the linac to deliver the high current beams with sufficiently low emittance for the production of 1 Angstrom FEL light to the experimental users. The module was technically commissioned in December 2015 and operated well above its nominal performances during the Injector Run from January to July 2016. Its operation has restarted in January 2017 with the startup of the whole facility, and the system met the design beam specifications after the bunch compression stages. A brief review of the commissioning and first operation experience of the RF system are presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB040 Status Update of the SINBAD-ARES Linac Under Construction at DESY 1412
 
  • B. Marchetti, R.W. Aßmann, S. Baark, U. Dorda, C. Engling, K. Flöttmann, I. Hartl, J. Hauser, J. Herrmann, M. Hüning, M. Körfer, B. Krause, G. Kube, J. Kuhlmann, S. Lederer, F. Ludwig, D. Marx, F. Mayet, M. Pelzer, I. Peperkorn, A. Petrov, S. Pfeiffer, S. Pumpe, J. Rothenburg, H. Schlarb, M. Titberidze, S. Vilcins, M. Werner, Ch. Wiebers, L. Winkelmann, K. Wittenburg, J. Zhu
    DESY, Hamburg, Germany
 
  ARES (Accelerator Research Experiment at Sinbad) is a linear accelerator for the production of low charge (from few pC to sub-pC) electron bunches with 100 MeV energy, fs and sub-fs duration and excellent arrival time stability. This experiment is currently under construction at DESY Hamburg and it is foreseen to start operation by the beginning of 2018 with the commissioning of the RF-gun. After an initial beam characterization phase, ARES will provide high temporal resolution probes for testing novel acceleration techniques, such as Laser driven plasma Wake-Field Acceleration (LWFA), Dielectric Laser Acceleration (DLA) and THz driven acceleration. In this work we present an overview of the present design of the linac with a special focus on 3D integration and planned installation phases of the beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB018 Engineering Collaboration Experience at the European XFEL 2604
 
  • L. Hagge, M. Hüning, J. Kreutzkamp
    DESY, Hamburg, Germany
 
  The construction of the European XFEL involved a huge internationally distributed and inter-disciplinary engineering effort. This paper discusses examples for good engineering practices which have been successfully developed and applied in the construction of the European XFEL. It addresses appropriate combination of de-/central activities in design collaboration and integration; the use of manufacturing bills of materials for coordinating and tracking contributions, as well as for clarifying responsibilities; the right amount of reviews for keeping activities in synch; some specific needs of and measures for in-kind collaboration; and general methods, tools and practices and spirit for efficient communication and collaboration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)