Author: Huang, C.S.
Paper Title Page
MOPAB124 A Fast Gain Calibration Algorithm for Beam Position Monitoring at Taiwan Photon Source 419
 
  • J.Y. Chen, C.H. Chen, M.-S. Chiu, P.C. Chiu, P.J. Chou, S. Fann, K.H. Hu, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  A stable, reliable and well-calibrated beam position monitor (BPM) system is essential for the operation of accelerators. At newly constructed Taiwan Photon Source (TPS), it not only helps us to determine the accelerator parameters, such as Twiss parameters and tune, but also to avoid the damage on accelerator instruments caused by high-energy particle beams or radiation. In this study, we demonstrate a new BPM calibration scheme at TPS storage ring. To excite the electron beams inside accelerator beam pipe by one horizontal or vertical corrector magnet, we measure the response of analog-to-digital converter (ADC) of each BPM pick-up electrodes with different lateral positions and beam currents. Depending on the measured ADC responses, we calibrated the beam position monitor system. Simultaneously, because of limited preparation time after every long shutdown, we are looking for a fast algorithm to ensure the measurement could be done easily and finished as quickly as possible.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK105 Preliminary Study of Injection Transients in TPS Storage Ring 777
 
  • C.H. Chen, B.Y. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK102 Introduction of Operating Procedures at TPS 1951
 
  • C.S. Huang, B.Y. Chen, C.H. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.H. Kuo, T.Y. Lee, C.C. Liang, W.Y. Lin, Y.-C. Liu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is the latest generation of 3 GeV synchrotron light source which subsystem includes magnet, power supply, vacuum, RF system, insertion device, control system, etc. The operating procedures and checking items are complex. To speed up the machine start-up and shut-down procedures, check the system's status, and prevent misoperation, we summarize the procedures for routine operation and develop the integrated control interface, which concentrates most machine information and control functions into a single window. This interface clearly indicates the machine status and improves operational efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK103 Development of Automatic Turn-on Systems for TPS Machine 1954
 
  • T.Y. Lee, B.Y. Chen, C.H. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.S. Huang, C.C. Liang, W.Y. Lin, Y.-C. Liu, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) has been successfully commissioned and has reached now stable operation. Now, the machine must be turned off routinely for week-ly maintenance. While following standard machine turn-on procedures for now, we have developed an automatic turn-on program to accelerate operation, for automatic system status checks and to prevent human errors. The turn-on program process flow includes: turn-on of the LTB (linac to booster transport line), the BTS (booster to storage ring transport line), the SR (storage ring), the BR (booster ring) power supplies and BR&SR pulsers as well as degaussing magnets, turning on the BR&SR RF sys-tems, activating the linac electron source, opening all insertion device (ID) gaps to their parking positions, set-ting all ID phases to zero, controlling all front ends (FEs) and loading the desired machine lattice. Individual pro-cedures can be executed alone depending on the desired practical situation. Experience so far shows, that it takes about 30 minutes to proceed from tunnel safety search to the injection ready state of the light source, including a 20 minute period for magnet degaussing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA2 Experience of Taiwan Photon Source Commissioning and Operation 2495
 
  • Y.-C. Liu, C.H. Chen, J.Y. Chen, M.-S. Chiu, P.J. Chou, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  The TPS commissioning period is from August 2014 to March 2016. The experience of phase I [1] (bare lattice 2014.8~2015.3) and phase II [2,3] (SRF and insertion devices 2015.9~2016.3) commissioning is overviewed. Taiwan Photon Source (TPS) started user operation in March 2016. The delivery user time reached 3211 hours. The continuous improvements of integrated accelerator performance are described and future developments are discussed.  
slides icon Slides WEOCA2 [32.368 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOCA2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB149 Characterization of the THz Radiation-Based Bunch Length Measurement System for the NSRRC Photoinjector 4080
 
  • C.C. Liang, B.Y. Chen, C.H. Chen, M.C. Chou, S. Fann, C.S. Huang, N.Y. Huang, J.-Y. Hwang, W.K. Lau, A.P. Lee, T.Y. Lee, W.Y. Lin, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A part of high brightness photo-injection (HBI) project at NSRRC is intending to adopt Coherent Transition Radiation (CTR) and Coherent Undulator Radiation (CUR) to generate THz radiation with an ultrashort electron bunch. Such high intensity THz sources allow the THz spectrum to be conducted easily with a THz interferometer and a Golay cell detector. Furthermore, the radiation spectrum carries information of the electron distribution which allows ultrashort electron bunch length measurements. For verifying correct measuring procedure during the CTR and CUR experiments, a conventional THz radiation generated by optical rectification from a ZnTe crystal has been performed. The produced THz pulse was sent into a Michelson interferometer which is designed for the autocorrelation of the intense, sub-mm and mm-wavelength, spatially-coherent radiation pulses. The THz spectrum can be further obtained from the interferogram by the Fourier transform process. In such way, the THz spectrum can be investigated if the result is satisfactory and can be applied on the THz CTR and CUR experiments for the next step.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)