Author: Gronefeld, A.
Paper Title Page
THPAB111 Sub-Femtosecond Jitter Ultra High Performance Oscillators for Accelerator Timing 3979
 
  • A. Gronefeld
    Ingenieurbüro Gronefeld, Herten, Germany
 
  Extremely stable RF-Sources are at the heart of Electron Beam Accelerators and impact beam quality and beam energy. Jitter requirements on those sources are very tight and linked to the quest of ever decreasing (XFEL) laser pulse length, currently in the tens of femtoseconds. For the Pohang Accelerator Laboratory in Pohang/Korea, a 2.856GHz phase-lockable oscillator with a jitter performance of 0.8fS (10kHz..10MHz) was developed and deployed, together with a master oscillator that supplies rubidium-stabilized 476MHz for synchronization. In terms of phase noise, these 2.856GHz oscillators exhibit -125dBc/Hz@1kHz, -145dBc/Hz@10kHz and -165dBc/Hz@100kHz offset, while reaching a noise floor of -180dBc/Hz. Using the same technology of a dielectric resonator oscillator, a 3.9GHz source was developed for the European XFEL at DESY/Hamburg, achieving 0.3fS (10kHz/10MHz). Phase noise is down to -125dBc/Hz@1kHz, -155dBc/Hz@10kHz and -175dBc/Hz@100kHz offset, with a noise floor of -180dBc/Hz. The strategy of designing ultra low phase-noise sources with dielectric resonators is outlined, and challenges and limitations within the oscillator design, but also measurement technology are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)