Author: Gorlov, T.V.
Paper Title Page
MOOCB2 Laser System Design and Operation for SNS H Beam Laser Stripping 57
 
  • Y. Liu, A.V. Aleksandrov, S.M. Cousineau, T.V. Gorlov, A.A. Menshov, A. Webster
    ORNL, Oak Ridge, Tennessee, USA
  • A. Rakhman
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work has been partially supported by U.S. DOE grant DE-FG02-13ER41967. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Recently, a high-efficiency laser assisted hydrogen ion (H) beam stripping was successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H stripping for charge exchange injection, it also served as a first example of using megawatt ultraviolet (UV) laser in an operational high power proton accelerator facility. This talk reports the design, implementation, and commissioning results of the macropulse laser system, laser transport line, and laser operation for the laser stripping experiment. The macropulse laser consists of a mode-locked picosecond pulsed seed laser and a burst-mode Nd:YAG laser amplifier. The general design concept can be adapted to any temporal beam structures in most accelerators. We have achieved UV pulses with the pulse widths varying between 34 to 54 ps and a maximum peak power over 3.5 MW. A laser transport line is installed to deliver the UV beam to the laser stripping chamber at a transmission efficiency of 70%. Laser operation including remote control and monitor of laser parameters will be described.
 
slides icon Slides MOOCB2 [11.306 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOOCB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA037 Injection of a Self-Consistent Beam at the Spallation Neutron Source 4516
 
  • J.A. Holmes, S.M. Cousineau, T.V. Gorlov, M.A. Plum
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This research was supported by the DOE Office of Science, Basic Energy Science.
We plan to demonstrate the injection of a self-consistent beam into the Spallation Neutron Source (SNS). Self-consistent beams are defined to be ellipsoidal distributions with uniform density and to retain these properties under all linear transformations. Self-consistent distributions may generate very little halo if realized in practice. Some may also be manipulated to generate flat beams. Self-consistent distributions involve very special relationships between the phase space coordinates, making them difficult to realize experimentally. One self-consistent distribution, the 2D rotating distribution, can be painted into the SNS ring, with slight modification of the lattice. However, it is unknown how robust self-consistent distributions will be under real world transport in the presence of nonlinearities and other collective effects. This paper studies these issues and the mitigation of unwanted effects by applying realistic detailed computational models to the simulation of the injection of rotating beams into SNS. The result is a feasible prescription for the injection of a rotating self-consistent distribution into the SNS ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)