Laser System Design and Operation for SNS H⁻ Beam Laser Stripping

<u>Y. Liu</u>, A. Aleksandrov, S. Cousineau, T. Gorlov, A. Menshov, A. Rakhman, A. Webster

> Spallation Neutron Source Oak Ridge National Laboratory

- Laser stripping principle and first stripping experiment
- Goal of the second laser stripping experiment and technical challenges on laser optics
- Laser system and operation for 10-µs macropulse H⁻ beam stripping
- Stripping experiment result
- Summary

SNS Laser Stripping Concept

Proof-of-Principle Experiment (2006)

Proof-of-Principle Experiment (2006)

H⁻ beam current

Stripped electrons by laser

Stripping efficiency: 90%

Danilov et al., PRSTAB (2007)

Laser Stripping on 10-µs Macropulse

Goal: To demonstrate high-efficiency laser stripping on 10- μ s macropulse which consists of 4,000 micro bunches of H⁻ beam.

Technical challenges

- Laser power
- Pulse structure and control
- Experiment in a highly radioactive environment

Laser Power Mitigation

Apply dispersion tailoring to reduce transition frequency spread

• Squeeze particle beam longitudinally and vertically to maximize beam density within the photon-particle overlap area

Results in factor ~10 reduction in required peak laser power

• Matching time structure of laser pulses to ion beam

Macropulse Laser – Master Oscillator Power Amplifier (MOPA)

Seeder: generate micro-pulses matching micro-bunch structure of ion beam Pulse Picker: provide macro-pulses matching macro-bunch structure of ion beam Amplifier & Harmonic Converter: boost power to the required level, e.g. 1MW @ 355 nm

Macropulse Laser Setup

Spatial profiles

UV pulse width and peak power

Layout of 10 µs Stripping Experiment

- Experiment is in the transport line to the Accumulation Ring
- Laser is located remotely in Ring Service Building
- Laser transport line has to be installed

Concerns:

- Laser power loss
- Pointing stability

Layout of 10 µs Stripping Experiment

- Experiment is in the transport line to the Accumulation
- Laser is located remotely in Ring Service Building
- Laser transport line has to be installed

Concerns:

- Laser power loss
- Pointing stability

Laser Beam Transport Line

Laser Beam Transport Line

Optics around the Stripping Chamber

Laser Beam Pointing Stability

Laser beam after LTL

Position variation: ± 0.37 mm (H) $\times \pm 0.33$ mm (V)

Laser beam at IP

Position variation: $\pm 0.10 \text{ mm}$ (H) × $\pm 0.11 \text{ mm}$ (V)

LATION

Primary Laser Beam Parameters for the Laser Stripping Experiment

	Required	Delivered						
Laser output specifications								
Macro-pulse length	10 us	10 us						
Micro-pulse width	> 30 ps	30 – 50 ps (adjustable)						
Peak power	1.5 MW	2.5 MW (at pulse width 35 ps)						
Laser Transport Line (LTL) performance								
Transmission efficiency	60%	70%						
Maximum power delivered on optical table in	> 1 MW	2 MW						
tunnel								
Maximum power delivered to stripping	1 MW	1.2 MW (limited to 1 MW at						
chamber		experiment)						
Pointing stability at the exit of LTL		± 0.37 mm (H) × ± 0.33 mm (V)						
Laser beam parameters at the photon-H ⁻ interaction point (IP)								
Horizontal beam divergence (4 σ)	2 mrad	2.6 mrad						
Vertical beam size (4σ)	0.8 mm	1.1 mm						
Maximum power delivered	1 MW	2 MW						
Pointing stability at the IP		± 0.10 mm (H) × ± 0.11 mm (V)						
Laser beam size and intensity on vacuum windows*								
Beam size (4 σ) on entrance vacuum window at the default position		3.4 mm (H) × 3.1 mm (V)						
Beam size (4 σ) on exit vacuum window at the default position		2.7 mm (H) × 2.9 mm (V)						

Y. Liu et al., NIMA 847, 171-178 (2017)

IPAC17

Laser-Ion Beam Alignment

- Vertical position alignment of laser beam based on photodetachment measurement
- Phase matching between laser and ion beams
- Final steps:
 - Insert stripping magnets, confirm H⁰ conversion.
 - Vary laser incoming angle to fine tune resonant frequency.
 - Only indication of correct angle is stripped beam (sensitivity ~0.1°).

C to be tauto () toute make may C ≥ a > C ≠ E ≥ + 4 + * E *0ymodel() (00, minute pt E *0 to be to be _ E *0 minute pt	CH, NORTH AT	Ci-Hulle				E COMM LORANCE		
photo-	photo-							
detachme								
		[]		00	UU -			
U 								
Beam Loss Monitor								
						(ROME		
	11	11				1		
Φ_{heam}								
. beam								
ϕ_{laser}								

Laser-Ion Beam Alignment

- Vertical position alignment of laser beam based on photodetachment measurement
- Phase matching between laser and ion beams

NEUTRON

SOURCE

National Laboratory

•

Laser-Ion Beam Alignment

- Vertical position alignment of laser beam based on photodetachment measurement
- Phase matching between laser and ion beams
- Final steps:
 - Insert stripping magnets, confirm H⁰ conversion.

 ϕ_{beam}

Final Stripping Results

March 28, 2016

IPAC17

~

Future Work – Scalability to 1-ms/60-Hz Laser Stripping

- Macropulse laser amplifier
 - Current flash-lamp pumped Nd:YAG amplifier can produce UV pulses over 30 50 ps with max peak power 3.5 MW at 10 $\mu s.$
 - Macropulse duration is limited to 30 μ s.
 - Fiber amplifier has excellent beam qualities but no macropulse amplification available.
 - Solid-state amplifiers with 1 ms burst duration are needed.
- Laser stripping in optical recycling cavity
 - Photons/Electrons: ~ 10⁷. Very low photon loss in the laser stripping process.
 - It is highly desirable to enhance and recycle the laser power with an optical cavity.
 - We developed a novel technique to solve this problem.
 - A. Rakhman, M. Notcutt, and Y. Liu, Opt. Lett. 40, 5562 (2015)

Summary

- Laser assisted hydrogen beam stripping method has been developed at SNS for high intensity proton beam production
- We have successfully demonstrated laser stripping on 10-μs
 H⁻ macropulses
 - Manipulation of ion beam parameters
 - Development of macropulse laser system
 - Installation of laser transport line
- Research on laser stripping in a power recycling optical cavity is on going.

