Author: Furuta, F.
Paper Title Page
MOPVA115 Status and Challenges of Vertical Electro-Polishing R&D at Cornell 1115
 
  • F. Furuta, M. Ge, T. Gruber, D.L. Hall, J.J. Kaufman, M. Liepe, R.D. Porter, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • T.D. Hall, M.E. Inman, R. Radhakrishnan, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Advanced Vertical Electro-Polishing (VEP) R&D for SRF Niobium cavities continues at Cornell's SRF group. One focus of this work is new EP cathode development in collaboration with KEK and Marui Galvanizing Co. Ltd (Marui) in Japan, and another focus is on HF free or acid free VEP protocols in collaboration with Faraday Technology Inc. The outcomes of these activities could be a significant cost reduction and an environmentally-friendlier VEP, which would be a breakthrough for future large scale EP applications on SRF cavities. Here we give a status update and report latest results from these R&D activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA117 Performance of a SRF Half-Wave-Resonator Tested at Cornell for the RAON Project 1123
 
  • M. Ge, F. Furuta, T. Gruber, D.L. Hall, S.W. Hartman, C. Henderson, M. Liepe, S. Lok, T.I. O'Connell, P.J. Pamel, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.H. Choi, J. Joo, J.W. Kim, W.K. Kim, J. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  A prototype half-wave-resonator (HWR) with frequency 162.5MHz and geometrical \beta=0.12 for the RAON project is currently undergoing testing at Cornell University. Detailed vertical performance testing includes (1) test of the bare cavity without the helium tank; (2) test of the dressed cavity with helium tank. In this paper, we report on the development of the test infrastructure, test results, and performance data analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA121 Frequency Tuner Development at Cornell for the RAON Half-Wave-Resonator 1134
 
  • M. Ge, F. Furuta, T. Gruber, D.L. Hall, S.W. Hartman, C. Henderson, M. Liepe, S. Lok, T.I. O'Connell, P.J. Pamel, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.H. Choi, J. Joo, J.W. Kim, W.K. Kim, J. Lee, I. Shin
    IBS, Daejeon, Republic of Korea
 
  The half-wave-resonators (HWR) for the RAON pro-ject require a slow frequency tuner that can provide at least 80 kHz tuning range. Cornell University is currently in the process of designing, prototyping, and testing this HWR tuner. In this paper, we present the tuner design, prototype fabrication, and first test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA122 Microphonics Studies of the CBETA Linac Cryomodules 1138
 
  • N. Banerjee, J. Dobbins, F. Furuta, D.L. Hall, G.H. Hoffstaetter, M. Liepe, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was performed through the support of NYSERDA (New York State Energy Research and Development Agency).
The Cornell BNL ERL Test Accelerator (CBETA) incorporates two SRF linacs; one for its injector and another for the energy recovery loop. Microphonics in both the cryomodules play a crucial role in determining the energy stability of the electron beam in high current operation. We have measured vibrations and frequency detuning of the SRF cavities and determined that the cryogenic system is the major source of microphonics in both cryomodules. In this paper we discuss these measurements and demonstrate an Active Microphonics Compensation system implemented using fast piezo-electric tuners which we incorporated in our Low Level RF control system to be used in routine operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA124 Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn 1145
SUSPSIK104   use link to see paper's listing under its alternate paper code  
 
  • R.D. Porter, F. Furuta, D.L. Hall, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE DE-SC008431, NSF-PHY 1549132, NSF DMR-1120296
Current Niobium-3 Tin (Nb3Sn) superconducting radio-frequency (SRF) accelerator cavities have rougher surfaces than conventional electropolished Niobium accelerator cavities. The surface roughness can cause enhancement of the surface magnetic field, pushing it beyond the critical field. If this occurs over a large enough area it can cause the cavity to quench. The surface roughness may cause other effects that negatively impact cavity quality factor (Q) performance. Reducing surface roughness of Nb3Sn cavities may be necessary to achieve higher gradient with high Q. Current chemical treatments for reducing the surface roughness of Niobium are challenging for Nb3Sn: the Nb3Sn layer is only ~2 um thick while it is difficult to remove less than 1 mu uniformly with most chemical treatments. This paper presents measurements of the surface roughness before and after Buffered Chemical Polish, Electropolishing and oxipolishing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK036 ERL Cryomodule Testing and Beam Capabilities 3010
 
  • F. Furuta, N. Banerjee, J. Dobbins, R.G. Eichhorn, M. Ge, D.L. Hall, G.H. Hoffstaetter, M. Liepe, R.D. Porter, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The main linac cryomodule (MLC) prototype is a key component for the Cornell-BNL ERL Test Accelerator (CBETA) project, which is a 4-turn FFAG ERL under construction at Cornell University. This novel cryomodule is the first SRF module ever to be fully optimized simul-taneously for high efficient SRF cavity operation and for supporting very high CW beam currents. Initial MLC testing has demonstrated that cavity performance and HOMs damping meet specification values. Recent, addi-tional tests have focused on RF field stability, and cavity microphonics. In this paper, we summarize the perfor-mance of this novel ERL cryomodule and evaluate its beam capabilities based on the measured performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA145 Analysis of Mean Free Path and Field Dependent Surface Resistance 3609
 
  • J.T. Maniscalco, F. Furuta, D.L. Hall, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF-PHY 1416318
Work from Cornell in 2016 built on recent theoretical research in the field of SRF to link the electron mean free path to the field-dependent BCS surface resistance. This research relates the magnitude of the ‘‘anti-Q-slope'', the puzzling reduction of surface resistance with increasing RF field intensity observed in certain cavities, to the doping level of nitrogen-doped niobium, quantified by the mean free path: shorter mean free paths correspond directly with stronger anti-Q-slopes. The theoretical connection comes through the overheating of the quasiparticles, which more effectively transfer their energy to the lattice at short mean free paths. In this report, we present an update of this analysis, investigating recent test results of low-temperature-doped single-cell and nine-cell cavities. We also study the theoretical implications for cavities at frequencies higher and lower than the often-studied 1.3~GHz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)