Author: Dutheil, Y.
Paper Title Page
MOPIK031 COSY Extraction Line Characterization and Modeling 567
 
  • B. Lorentz, M. Bai, Y. Dutheil, R. Tölle, C. Weidemann
    FZJ, Jülich, Germany
 
  COSY is a versatile racetrack-type synchrotron accelerating protons and deuterons in a range of rigidity between 1 T m and 11 T m. Circulating beam can be slowly extracted on a third order resonance and channeled towards different users. New users of the COSY beam have presented new challenges with specific requests, most notably in term of beam shape. This in turn drove a strong interest to develop and improve characterization and modeling methods in the COSY extraction beam line. In this contribution we will present the different beam characterization methods used and their limitations. We will then discuss the modeling of the line and the importance of an accurate and reliable model of the extraction line. Some of the latest beam measurements are presented and compared to modeled results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK073 Calibration of Linear Optics of COSY Based on ORM Data 699
 
  • C. Weidemann, M. Bai, Y. Dutheil, F. Hinder, B. Lorentz
    FZJ, Jülich, Germany
 
  The COoler SYnchrotron in Jülich is a well suited accelerator for a precursor experiment on the direct measurement of the Electric Dipole Moment (EDM) of the deuteron (see* and references within). It provides polarized and unpolarized proton and deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c**, allows for phase space cooling and is highly flexible with respect to ion-optical settings***. Unfortunately, a model independent linear optics measurement is not possible and so far the existing MAD-X model of COSY does not provide an agreement with the actual machine parameters that is required by future experiments, such as the EDM experiment. Significant deviations with respect to the working point and linear optics have been reported****. As shown in*****, a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm in a C++ program was successfully developed and carefully benchmarked. This contribution presents the application of the new program on measured ORM data and its capabilities in calibrating linear optics as well as reconstructing machine imperfections such as gradient errors of quadrupole magnets and calibration factors of BPMs and steerers.
* D. Eversmann et al., PRL 115, no. 9, 094801 (2015).
** R. Maier, NIM A 390, 1 (1997).
*** C. Weidemann et al., PRSTAB 18, 020101 (2015).
**** D. Ji et al., IPAC16, doi:10.18429/JACoW-IPAC2016-TUPMR026.
***** C. Weidemann et al., IPAC16, doi:10.18429/JACoW-IPAC2016-THPMB009.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA081 An MDM Spin Transparent Quadrupole for Storage Ring Based EDM Search 2264
 
  • Y. Dutheil, M. Bai
    FZJ, Jülich, Germany
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A storage ring provides an attractive option for directly measuring the electric dipole moment (EDM) of charged particles. To reach a sensitivity of 1029 e.cm, it is critical to mitigate the systematic errors from all sources. This daunting task is pushing the precision frontier of accelerator science and technology beyond its current state of the art. Here, we present a unique idea of a magnetic dipole moment (MDM) spin transparent quadrupole that can significantly reduce the systematic errors due to the transverse electric and magnetic fields that particle encounters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)