Author: Chi, Y.L.
Paper Title Page
TUPAB008 CEPC Linac Design and Beam Dynamics 1315
 
  • C. Meng, Y.L. Chi, X.P. Li, G. Pei, S. Pei, D. Wang, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  Circular Electron-Positron Collider (CEPC) is a 100 km ring e+ e collider for a Higgs factory, which is organized and led by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS) in collaboration with a number of institutions from various countries. The linac of CEPC is a normal con-ducting S-band linac with frequency in 2856.75 MHz and provide electron and positron beam at an energy up to 10 GeV with bunch charge in 1.0 nC and repetition frequency in 100 Hz. The linac scheme will be detailed discussed in this paper, including electron bunching system, positron source design, and main linac. Positrons are generated using a 4 GeV electron beam with bunch charge 10 nC hit tungsten target and the positron source design are presented. The beam dynamic results with longitudinal short Wakefield, transverse Wakefield and errors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB009 Design Study on CEPC Positron Damping Ring and Bunch Compressor 1318
 
  • D. Wang, Y.L. Chi, J. Gao, X.P. Li, C. Meng, J.R. Zhang
    IHEP, Beijing, People's Republic of China
  • G. Pei
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  The primary purpose of CEPC damping ring is to reduce the transverse phase spaces of positron beam to suitably small value at the beginning of Linac and also adjust the time structure of positron beam for reinjection into the Linac. Longitudinal bunch length control was provided to minimize wake field effects in the Linac by a bunch compressor system after the damping ring. Both designs for damping ring and bunch compressor were discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK033 Test and Commissioning Results of NSC KIPT 100 MeV/ 100 kW Electron Linear Accelerator, Subcritical Neutron Source Driver 1751
 
  • A.Y. Zelinsky, O.E. Andreev, V.P. Androsov, S.V. Bazarov, O. Bezditko, O.V. Bykhun, Y.L. Chi, A.N. Gordienko, V.A. Grevtsev, A. Gvozd, D.Y. He, X. He, V.E. Ivashchenko, A.A. Kalamayko, I.I. Karnaukhov, I.M. Karnaukhov, X.C. Kong, V.P. Lyashchenko, H.Z. Ma, M. Moisieienko, S. Pei, X.H. Peng, A.V. Reuzayev, I.M. Subotenko, D.V. Tarasov, V.I. Trotsenko, X. Wang
    NSC/KIPT, Kharkov, Ukraine
  • Y.L. Chi, D.Y. He, X. He, X.C. Kong, H.Z. Ma, S. Pei, X.H. Peng, X. Wang
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Neutron Source on the base of subcritical assembly has been constructed and is under commissioning in NSC KIPT, Kharkov, Ukraine. The source uses 100 MeV/ 100 kW electron linear accelerator as a driver. The accelerator was designed and manufactured in IHEP, Beijing, China. The accelerator has been assembled at NSC KIPT, all accelerator systems and components were and accelerator is under commissioning. Reports describes the status of the NSC KIPT 100 MeV/ 100 kW electron linear accelerator. The results of the first tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK034 NSC KIPT Neutron Source on the Base of Subcritical Assembly With Electron Linear Accelerator Driver 1754
 
  • A.Y. Zelinsky, I.M. Karnaukhov, A. Mytsykov, I. Ushakov
    NSC/KIPT, Kharkov, Ukraine
  • Y.L. Chi
    IHEP, Beijing, People's Republic of China
  • Y. Gohar
    ANL, Argonne, Illinois, USA
 
  National Science Center Kharkov Institute of Physics & Technology (NSC KIPT) together with ANL, Chicago, USA developed up to date scientific facility that is Neutron Source on the base of subcritical assembly driven with 100 MeV/100 kW electron accelerator. During bombarding of the Tungsten or Uranium targets the electron beam generates the original neutrons that are multiplied in the facility core of low enriched uranium trough the fission process. The maximal value of the neutron multiplication factor is 0.98. So the total neutron flux output is increased as much as 50 times and is 2·10 13 n·cm-2·c-1. The subcriticality of the system eliminates the possibility of self-sustained chain reaction existence that increases the nuclear safety of the facility drastically. The neutron source mentioned above is the first facility of such type in the world. The results that will be obtained at studies of neutron characteristics of the neutron source with low enriched uranium core and during optimization of the operation modes of the facility systems will became the scientific background for the further development of the safe, ecological nuclear energetics of the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK045 Design of a C-band Travelling-wave Accelerating Structure at IHEP 4196
 
  • J.R. Zhang, Y.L. Chi, J. Lei, H. Wang, X. Wang
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  A C-band travelling wave accelerating structure has been developed at IHEP. The structure is a constant gra-dient type and operating with a 3'/4 mode. The total length of the structure is 1.8-meters long with 85 regular cells and two coupler cells. 2D program Superfish is used to optimize the cavity shape and the iris size. The wall cells are rounded for it can improved the Q value for about 10%. The cell irises have an elliptical profile to minimize the peak surface electric fields. In order to compatible with the compact of the short-range wake field on the beam dynamics, the average iris radius is 7.15 mm. The group velocity of the designed structure is from 2.8% to 1.4%. Between the rectangular waveguide and the accelerating structure, magnetic coupling is adopted. The coupled cavity is racetrack type in order to minimize the asymmetry in the coupler. Kyhl's method is used to match the input and output coupler.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)