Author: Chance, A.     [Chancé, A.]
Paper Title Page
WEPVA001 Electron Injector for Multi-Stage Laser-Driven Plasma Accelerators 3244
 
  • B. Cros, T. Audet, P. Lee, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Chancé, O. Delferrière, A. Mosnier
    CEA/DSM/IRFU, France
  • N. Delerue
    LAL, Orsay, France
  • S. Dobosz-Dufrénoy, A. Maitrallain, P. Monot
    CEA, Gif-sur-Yvette, France
  • J. Schwindling
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Specka
    LLR, Palaiseau, France
 
  Funding: LAbex PALM, Labex P2IO, Triangle de la Physique, ANR grant Equipex CILEX APOLLON, EU H2020 research and innovation programme under grant agreement No. 653782 EUPRAXIA.
An electron injector in the 50-200 MeV range, based on laser wakefield acceleration, is studied in the context of multi-stage laser plasma acceleration. Test experiments carried out at the UHI100 laser facility show that electron bunches in the 100 MeV range, generated by ionization-induced injection mechanism, and accelerated by laser driven wakefield in a mm-scale length plasma can be transported using a magnetic line and precisely analysed. A comparison with simulation results provides insights on electron dynamics and indicates ways to optimize the injector.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA001 Progress on the Optics Corrections of FCC-hh 2019
 
  • D. Boutin, A. Chancé, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, D. Schulte
    CERN, Geneva, Switzerland
 
  The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group, and the natural evolution of existing LHC. Studies are ongoing about the evaluation of the various magnets mechanical errors and field errors tolerances in the arc sections of FCC-hh, as well as an estimation of the correctors strengths necessary to perform the corrections of the errors. In this study advanced correction schemes for the residual orbit, the linear coupling and the ring tune are described. The impact of magnet tolerances on the residual errors, on the correctors technological choice and on the beam screen design are discussed. In particular the effect of the dipole a2 error is emphasized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA002 Updates on the Optics of the Future Hadron-Hadron Collider FCC-hh 2023
 
  • A. Chancé, D. Boutin, B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, A. Langner, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA003 Advance on Dynamic Aperture at Injection for FCC-hh 2027
 
  • B. Dalena, D. Boutin, A. Chancé
    CEA/IRFU, Gif-sur-Yvette, France
  • B.J. Holzer, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305.
In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the first evaluation of dipole field quality, based on the Nb3Sn technology, has shown a Dynamic Aperture at injection above the LHC target value. In this paper the effect of field imperfections on the dynamic aperture, using the updated lattice design, is presented. Tolerances on the main multipole components are evaluated including feed-down effect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)