Paper | Title | Page |
---|---|---|
WEPVA001 | Electron Injector for Multi-Stage Laser-Driven Plasma Accelerators | 3244 |
|
||
Funding: LAbex PALM, Labex P2IO, Triangle de la Physique, ANR grant Equipex CILEX APOLLON, EU H2020 research and innovation programme under grant agreement No. 653782 EUPRAXIA. An electron injector in the 50-200 MeV range, based on laser wakefield acceleration, is studied in the context of multi-stage laser plasma acceleration. Test experiments carried out at the UHI100 laser facility show that electron bunches in the 100 MeV range, generated by ionization-induced injection mechanism, and accelerated by laser driven wakefield in a mm-scale length plasma can be transported using a magnetic line and precisely analysed. A comparison with simulation results provides insights on electron dynamics and indicates ways to optimize the injector. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOBB3 | HORIZON 2020 EuPRAXIA Design Study | 1265 |
|
||
The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. | ||
![]() |
Slides TUOBB3 [9.269 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA001 | Progress on the Optics Corrections of FCC-hh | 2019 |
|
||
The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group, and the natural evolution of existing LHC. Studies are ongoing about the evaluation of the various magnets mechanical errors and field errors tolerances in the arc sections of FCC-hh, as well as an estimation of the correctors strengths necessary to perform the corrections of the errors. In this study advanced correction schemes for the residual orbit, the linear coupling and the ring tune are described. The impact of magnet tolerances on the residual errors, on the correctors technological choice and on the beam screen design are discussed. In particular the effect of the dipole a2 error is emphasized. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA002 | Updates on the Optics of the Future Hadron-Hadron Collider FCC-hh | 2023 |
|
||
Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA002 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA003 | Advance on Dynamic Aperture at Injection for FCC-hh | 2027 |
|
||
Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union's H2020 Framework Programme under grant agreement no. 654305. In the hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the first evaluation of dipole field quality, based on the Nb3Sn technology, has shown a Dynamic Aperture at injection above the LHC target value. In this paper the effect of field imperfections on the dynamic aperture, using the updated lattice design, is presented. Tolerances on the main multipole components are evaluated including feed-down effect. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |