Author: Brooks, S.J.
Paper Title Page
MOPIK122 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 820
 
  • N. Tsoupas, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell.
* http://arxiv.org/abs/1504.00588
** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
*** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10
**** http://www.scientificcomputing.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK123 Beam Dynamics Numerical Studies Regarding CBETA Cornell-BNL ERL 824
 
  • F. Méot, S.J. Brooks, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by New York State Energy Research and Development Authority (NYSERDA)
The Cornell-BNL Electron Test Accelerator CBETA is based on a 36 MeV superconducting linac and on a single 4-pass up/4-pass down linear FFAG return loop, for beam acceleration from 6 to 150 MeV and energy recovery. Numerical beam dynamics simulations have accompanied and eventually validated the quadrupole-doublet FFAG cell technology and parameters, and following that the complete return loop, all along the ERL lattice design process. They are key to assessing and validating the ERL optics and beam behavior over the whole acceleration/ER cycle, and in preparing future machine operation. This paper presents various of these beam dynamics studies, including start-to-end simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK007 Production of Low Cost, High Field Quality Halbach Magnets 4118
 
  • S.J. Brooks, J. Cintorino, A.K. Jain, G.J. Mahler
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A shimming method has been developed at BNL that can improve the integrated field linearity of Halbach magnets to roughly 1 unit (1 part in 104) at r=10mm. Two sets of magnets have been produced: six quadrupoles of strength 23.62T/m and six combined-function (asymmetrical) Halbach magnets of 19.12T/m with a central field of 0.377T. These were assembled using a 3D printed plastic mould inside an aluminium tube for strength. A shim holder, which is also 3D printed, is fitted within the magnet bore and holds iron wires of particular masses that cancel the multipole errors measured using a rotating coil on the unshimmed magnet. A single iteration of shimming reduces error multipoles by a factor of 4 on average. This assembly and shimming method results in a high field quality magnet at low cost, without stringent tolerance requirements or machining work. Applications of these magnets include compact FFAG beamlines such as FFAG proton therapy gantries, or any bending channel requiring a ~4x momentum acceptance. The design and shimming method can also be generalised to produce custom nonlinear fields, such as those for scaling FFAGs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA094 Permanent Halbach Magnet Proton and Superconducting Carbon Cancer Therapy Gantries 4679
 
  • D. Trbojevic, S.J. Brooks, B. Parker, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • W. Lou
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Hadron cancer therapy facilities are expanding exponentially as advantages with respect to other radiation treatments are localized energy deposition at the tumor and reduction of side effects. The main problem of expansion is the high cost and large size of the facility. The largest cost is the delivery systems, especially isocentric gantries. We present first, the permanent Halbach gantry with significant reduction in cost and simplified operation as all treatment energies are transported from an accelerator to the patient through the same Fixed Field Alternating Gradient (FFAG) structure. The superconducting FFAG gantry also transports at one setting all energies required for the cancer treatment of the patient with carbon ions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)