Author: Boyd, J.
Paper Title Page
TUPVA007 Impact of LHC and SPS Injection Kicker Rise Times on Lhc Filling Schemes and Luminosity Reach 2043
 
  • W. Bartmann, M.J. Barnes, J. Boyd, E. Carlier, A. Chmielinska, B. Goddard, G. Kotzian, C. Schwick, L.S. Stoel, D. Valuch, F.M. Velotti, V. Vlachodimitropoulos, C. Wiesner
    CERN, Geneva, Switzerland
 
  The 2016 LHC proton filling schemes generally used a spacing between injections of batches of bunches into SPS and LHC corresponding to the design report specification for the SPS and LHC injection kicker rise times, respectively. A reduction of the batch spacing can be directly used to increase luminosity without detrimental effects on beam stability, and with no increase in the number of events per crossing seen by the experiments. Measurements and simulations were performed in SPS and LHC to understand if a shorter injection kicker rise time and associated tighter batch spacing would lead to increased injection oscillations of the first and last bunches of a bunch train and eventually also a systematic growth of the transverse emittance. The results were used to define the minimum possible batch spacing for an acceptable emittance growth in LHC, with gains of reductions of about 10% possible in both machines. The results are discussed, including the potential improvement of the LHC luminosity for different filling schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)