Paper | Title | Page |
---|---|---|
MOPIK023 | Cornell Laboratory for High Intensity, Ultra-Bright and Polarized Electron Beams | 551 |
|
||
Funding: This work has been funded by the National Science Foundation (Grant No. PHY-1416318) and Department of Energy (Grants No. DE-SC0014338, No. DE-SC0011643 and No. DE-SC0016203). We report on the current activities pursued at Cornell University for the production of electron beams tailored to a wide range of applications. We have developed the expertise to grow many different type of high quantum efficiency photocathode belonging to the alkali antimonide family. Those materials are ideal candidates to produce high intensity beam with average currents in the mA range. When operated near threshold at cryogenic temperature in transmission mode they can also generate the electron beams needed to perform ultrafast electron diffraction of bio molecules. We have recently expanded our facility with a Mott polarimeter to include the capability to measure polarization of the electron beam. The photocathode lab is being complemented by a dedicated photo-gun laboratory to test the photocathode properties in a real environment and to perform measurement of the beam properties under new and yet unexplored operating conditions. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOCB3 | CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator | 1285 |
|
||
Funding: New York State Energy Research and Development Authority (NYSERDA) Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section. |
||
![]() |
Slides TUOCB3 [41.888 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB126 | Multi-objective Genetic Optimization of Single Shot Ultrafast Electron Diffraction Beamlines | 1615 |
|
||
We present the results of multi-objective genetic algorithm optimizations of two single-shot ultrafast electron diffraction (UED) beam lines. The first is based on a 225 kV dc gun featuring a novel cryocooled photocathode system and buncher cavity. The second uses a 100 MV/m 1.6 cell normal conducting rf (NCRF) gun, as well as a 9 cell 2 Pi/3 bunching cavity placed between two solenoids. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed. These results demonstrate the viability of the approaches taken for both beamlines studied as well as the use of using genetic algorithms in the design and operation of UED beamlines. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB126 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA136 | Using Sloppy Models for Constrained Emittance Minimization at the Cornell Electron Storage Ring (CESR) | 2418 |
|
||
Funding: DOE DE-SC0013571 NSF DGE-1144153 In order to minimize the emittance at the Cornell Electron Storage Ring (CESR), we measure and correct the orbit, dispersion, and transverse coupling of the beam.* However, this method is limited by finite measurement resolution of the dispersion, and so a new procedure must be used to further reduce the emittance due to dispersion. In order to achieve this, we use a method based upon the theory of sloppy models.** We use a model of the accelerator to create the Hessian matrix which encodes the effects of various corrector magnets on the vertical emittance. A singular value decomposition of this matrix yields the magnet combinations which have the greatest effect on the emittance. We can then adjust these magnet ‘‘knobs'' sequentially in order to decrease the dispersion and the emittance. We present here comparisons of the effectiveness of this procedure in both experiment and simulation using a variety of CESR lattices. We also discuss techniques to minimize changes to parameters we have already corrected. * J. Shanks, D.L. Rubin, and D. Sagan, Phys. Rev. ST Accel. Beams 17, 044003 (2014). ** K.S. Brown and J.P. Sethna, Phys. Rev. E 68, 021904 (2003). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA136 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |