Author: Appleby, R.B.
Paper Title Page
TUPVA034 SPS Studies in Preparation for the Crab Cavity Experiment 2133
 
  • A. Alekou, A. Alekou, F. Antoniou, F. Antoniou, G. Arduini, G. Arduini, H. Bartosik, H. Bartosik, R. Calaga, R. Calaga, Y. Papaphilippou, Y. Papaphilippou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • A. Alekou, R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.B. Appleby, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  A local Crab Cavity (CC) scheme will recover head-on collisions at the Interaction Points (IPs) of the High Luminosity LHC (HL-LHC), which aims to increase the LHC luminosity by a factor of 3-10. The first time that CC will ever be tested with proton beams will be in 2018 in the SPS machine. The available dedicated Machine Development (MD) time after the installation of the cavities will be limited and therefore good preparation is essential in order to ensure that the MDs are as efficient as possible. This paper presents the simulations and experimental studies performed in preparation for the future MDs and discusses the next steps.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA040 Overview of Design Development of FCC-hh Experimental Interaction Regions 2151
 
  • A. Seryi, J.L. Abelleira, E. Cruz Alaniz, L.J. Nevay, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Barranco García, T. Pieloni
    EPFL, Lausanne, Switzerland
  • M. Benedikt, M.I. Besana, X. Buffat, H. Burkhardt, F. Cerutti, A. Langner, R. Martin, W. Riegler, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • M. Boscolo, F. Collamati
    INFN/LNF, Frascati (Roma), Italy
  • M. Hofer
    TU Vienna, Wien, Austria
  • L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  The experimental interaction region is one of the key areas that define the performance of the Future Circular Collider. In this overview we will describe the status and the evolution of the design of EIR of FCC-hh, focusing on design of the optics, energy deposition in EIR elements, beam-beam effects and machine detector interface issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB013 Recent Development and Results With the Merlin Tracking Code 104
 
  • S.C. Tygier, R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, S. Rowan
    IIAA, Huddersfield, United Kingdom
  • J. Molson
    LAL, Orsay, France
 
  Funding: Work supported by High Luminosity LHC : UK (HL-LHC-UK), grant number ST/N001621/1
MERLIN is an high performance accelerator simulation code which is used for modelling the collimation system at the LHC. It is written in extensible object-oriented C++ so new physics processes can be easily added. In this article we present recent developments needed for the Hi-Lumi LHC and future high energy colliders including FCC, such as hollow electron lenses and composite materials. We also give an overview of recent simulation work, validation against LHC data from run 1 and 2, and loss maps for Hi-Lumi LHC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA102 Modeling the Low Level RF Response on the Beam during Crab Cavity Quench 1098
 
  • R. Apsimon, G. Burt, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • P. Baudrenghien, K.N. Sjobak
    CERN, Geneva, Switzerland
 
  The High Luminosity Upgrade for the LHC (HL-LHC) relies on crab cavities to compensate for the luminosity reduction due to the crossing angle of the colliding bunches at the interaction points. In this paper we present the simulation studies of cavity quenches and the impact on the beam. The cavity voltage and phase during the quench is determined from a simulation in Matlab and used to determine the impact on the beam from tracking simulations in SixTrack. The results of this study are important for determining the required machine protection and interlock systems for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK037 Proton Cross-Talk and Losses in the Dispersion Suppressor Regions at the FCC-hh 1763
 
  • H. Rafique, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J.L. Abelleira
    JAI, Oxford, United Kingdom
  • A.M. Krainer, A. Langner
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol), EU's Horizon 2020 grant No 654305
Protons that collide at the interaction points of the FCC-hh may contribute to the background in the subsequent detector. Due to the high luminosity of the proton beams this may be of concern. Using DPMJET-III to model 50 TeV proton-proton collisions, tracking studies have been performed with PTC and MERLIN in order to gauge the elastic and inelastic proton cross-talk. High arc losses, particularly in the dispersion suppressor regions, have been revealed. These losses originate mainly from particles with a momentum deviation, either from interaction with a primary collimator in the betatron cleaning insertion, or from the proton-proton collisions. This issue can be mitigated by introducing additional collimators in the dispersion suppressor region. The specific design, lattice integration, and the effect of these collimators on cross-talk is assessed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA036 Cross-Talk Studies between FCC-hh Experimental Interaction Regions 2136
 
  • J.L. Abelleira, A. Seryi
    JAI, Oxford, United Kingdom
  • R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • M.I. Besana
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol), EU's Horizon 2020 grant No 654305.
Debris from 50 TeV proton-proton collisions at the main interaction point in the FCC-hh may contribute to the background in the subsequent detector. This cross-talk is of possible concern for the FCC-hh due to the high luminosity and energy of the collider. DPMJET-III is used as a collision debris generator in order to assess the muon cross-talk contribution. An analytical calculation of muon range in rock is performed. This is followed by a full Monte Carlo simulation using FLUKA, where the accelerator tunnel has been modelled. The muon cross talk between the adjacent interaction points is assessed and its implications for FCC-hh design are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA154 Project-Based Cooperative Learning in Accelerator Science and Technology Education 2458
 
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R.B. Appleby, G.X. Xia
    UMAN, Manchester, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • J.A. Clarke, O.B. Malyshev, N. Marks, B.D. Muratori, M.W. Poole, Y.M. Saveliev, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.P. Welsch, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The work is funded by STFC via the Cockcroft Institute core grant.
The next generation of particle accelerators will require the training of greater numbers of specialist accelerator physicists and engineers . These physicists and engineers should have a broad understanding of accelerator physics as well as the technology used in particle accelerators as well as a specialist in some area of accelerator science and technology . Such specialists can be trained by combining a University based PhD, in collaboration with national laboratory training with a broad taught accelerator lecture program. In order to have a faster start we decided to run an intensive two week school to replace the basic course at the Cockcroft Institute. At the same time we decided to investigate the use of problem based learning to simulate the way accelerator science tends to work in practice. In this exercise he students worked in groups of 5 to design a 3rd generation light source from scratch based on photon light specifications. In comparison to similar design exercises we stipulate that all students must do all parts and students are not allowed to specialise. A comparison with a standard lecture based education programme is discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA1 A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools 2478
 
  • J. Molson, A. Faus-Golfe
    LAL, Orsay, France
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    IIAA, Huddersfield, United Kingdom
  • R. Bruce, F. Cerutti, A. Ferrari, A. Mereghetti, S. Redaelli, K.N. Sjobak, V. Vlachoudis
    CERN, Geneva, Switzerland
  • H. Rafique
    University of Manchester, Manchester, United Kingdom
  • Y. Zou
    IHEP, Beijing, People's Republic of China
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
High performance collimation systems are required for current and proposed high energy hadron accelerators in order to protect superconducting magnets and experiments. In order to ensure that the collimation system designs are sufficient and will operate as expected, precision simulation tools are required. This paper discusses the current status of existing collimation system tools, and performs a comparison between codes in order to ensure that the simulated interaction physics between a proton and a collimator jaw is accurate.
 
slides icon Slides WEOBA1 [7.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB056 Dynamic Aperture Studies of the Long-Range Beam-Beam Interaction at the LHC 3840
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, M. Giovannozzi, E.H. Maclean
    CERN, Geneva, Switzerland
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Long-range beam-beam interactions dictate the choice of operational parameters for the LHC, such as the crossing angle and β* and therefore the luminosity reach for the collider. These effects can lead to particle losses, closed orbit effects and emittance growth. Defining how these effects depend on the beam-beam separation will determine the minimum crossing angle and the β* the LHC can operate. In this article, analysis from a dedicated machine study is presented in which the crossing angle was reduced in steps and the impact on beam intensity and luminosity lifetimes were observed. Based on the observations during the machine study, the intensity decays are compared to expectations from models. Estimates of the luminosity reach in the LHC are also computed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB059 CSR and Space Charge Studies for the CLARA Phase 1 Beamline 3851
 
  • B.S. Kyle, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J.K. Jones, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.J. de Loos, S.B. van der Geer
    Pulsar Physics, Eindhoven, The Netherlands
 
  The installation of Phase 1 of CLARA, the UK's new FEL test facility, is currently underway at Daresbury Laboratory. When completed, it will be able to deliver 45 MeV electron beams to the pre-existing VELA beamline, which runs parallel. Phase 1 consists of a 10 Hz photocathode gun, a 2 m long S-band travelling wave linac, a spectrometer line, and associated optics and diagnostics. A detailed study into the beam dynamics of the lattice is presented, with a focus towards the effects of space charge and coherent synchrotron radiation on the electron bunch. Simulations disagreed with predictions from a one-dimensional model of coherent radiation, and this disagreement is believed to be due to a violation of the Derbenev criterion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)