Author: Allen, C.K.
Paper Title Page
MOPIK117 On the Computation of Phase and Energy Gain for a Thin-Lens RF Gap Using a General Field Profile 810
 
  • C.K. Allen
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC05-00OR22725.
The thin-lens representation for an RF accelerating gap has been well developed and is documented by Lapostolle [5], Weiss [6], Wangler [14], and others [9], [10]. These models assume that the axial electric field is both centered and symmetric so it has a cosine expansion. Presented here is a model that considers general axial fields. Both the cosine and sine transit time factors are required plus their Hilbert transforms. The combination yields a complex Hamiltonian rotating in the complex plane with the synchronous phase. The phase and energy gains are computed in the pre-gap and post-gap regions then aligned with asymptotic values of wave number. Derivations are outlined, examples are shown, and simulations presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA093 Open XAL Status Report 2017 4676
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    SLAC, Menlo Park, California, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, B.T. Folsom, E. Laface, Y.I. Levinsen, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
  • J.E. Muller
    CERN, Geneva, Switzerland
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)