Author: Allegra, L.
Paper Title Page
WEOBB2 Beam Commissioning of the High Intensity Proton Source Developed at INFN-LNS for the European Spallation Source 2530
 
  • L. Neri, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, L. Celona, F. Chines, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, M. Mazzaglia, A. Miraglia, S. Passarello, G. Pastore, A. Seminara, A. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
 
  At the Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.  
slides icon Slides WEOBB2 [2.457 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA054 Study of The New Return Yoke for The Upgraded Superconducting Cyclotron of INFN-LNS 3381
 
  • A. Calanna, L. Allegra, L. Calabretta, G. Costa, G. D'Agostino, G. Gallo, D. Rifuggiato, A.D. Russo
    INFN/LNS, Catania, Italy
  • G. D'Agostino
    Universita Degli Studi Di Catania, Catania, Italy
 
  The LNS Superconducting Cyclotron (CS) has been working for 20 years making available a wide range of ions and energies. Its operational diagram is peculiar and many experiment are performed each year. In the near future a major upgrade is planned. This will allow to overcome the major limitation of the CS, which is the beam power limited at 100 W. In the new version of the CS, the extracted beam power will be increased up to a factor 100. This improvement will be reached adding a new extraction line dedicated to a specific set of light ions and energies extracted by stripping. The new design could affect the beam dynamics strongly. Indeed, the iron yoke penetrations don't respect the three folds symmetry of our cyclotron. This inhomogeneity produces unwanted field harmonics, which have to be reduced as much as possible to avoid beam precession or second order effects. Here the study accomplished to minimize the perturbation of the non-three fold field symmetry using the current sheet approximation (CSA) is presented, along with the state-of-art configuration of the updated cyclotron  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)