Author: Zhukov, A.P.
Paper Title Page
TUOAA02 Status and Performance of ORNL Spallation Neutron Source Accelerator Systems 1007
 
  • Y.W. Kang, A.V. Aleksandrov, D.E. Anderson, M.S. Champion, M.T. Crofford, J. Galambos, B. Han, S.-H. Kim, S.W. Lee, J. Moss, V.V. Peplov, C. Piller, M.A. Plum, R.T. Roseberry, J.P. Schubert, A.P. Shishlo, M.P. Stockli, C.M. Stone, R.F. Welton, M. Wezensky, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • L.A. Longcoy, M. Magda, M.E. Middendorf, W.S. Passmore, C.C. Peters, J. Price, R.B. Saethre, J. Saunders
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The Spallation Neutron Source (SNS) accelerator sys-tems have been performing continuously and progressively since commissioning in 2006 to deliver the neutrons to beamlines. The 1.4 MW design beam power has been demonstrated during 24/7 operation while developments and investigations for system improvements are still ongoing to achieve the full design beam power and availability. Numerous difficulties that impeded reaching the full performance of the SNS accelerator systems have been identified and are being eliminated through repairs, upgrades, and developments. In this report, operational performance and developments of the accelerator systems are presented along with the efforts for future upgrades of the SNS.
 
slides icon Slides TUOAA02 [5.410 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR034 Development and Tests of Beam Test Facility with New Spare RFQ for Spallation Neutron Source 1320
 
  • Y.W. Kang, A.V. Aleksandrov, M.S. Champion, M.T. Crofford, J. Moss, R.T. Roseberry, J.P. Schubert, M.P. Stockli, C.M. Stone, R.F. Welton, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B. Han, S.W. Lee, M.E. Middendorf, J. Price, R.B. Saethre
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The Beam Test Facility (BTF) has been constructed to validate the performance of the new RFQ, to study ion source improvements, and to support neutron moderator development and six-dimensional phase space measure-ments for SNS. The BTF includes an H ion source, Ra-dio-Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT) beam diagnostics systems. A spare RFQ was built and fully RF tested in the BTF and will be installed in the SNS linac in the future. The test stand is ready to run with the H ion beam through the new RFQ to fully validate the RFQ performance. The RFQ was designed to have the beam characteristics iden-tical to the existing RFQ with improved operational relia-bility and stability. The H RF plasma ion source system includes new high power RF components for improved front-end system performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY042 Open XAL Status Report 2016 3083
 
  • T.A. Pelaia II, C.K. Allen, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.P. Chu, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • E. Laface, Y.I. Levinsen, M. Muñoz
    ESS, Lund, Sweden
  • Y. Li
    IHEP, Beijing, People's Republic of China
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
Formed in 2010, the Open XAL accelerator physics software platform was developed through an international collaboration among several facilities to establish it as a standard for accelerator physics software. While active development continues, the project has now matured. This paper presents the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)