Author: Zhou, T.Y.
Paper Title Page
MOPMB039 Design of Bunch Length Measurement System at the IRFEL Using a Martin-Puplett Interferometer 178
 
  • T.Y. Zhou, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China (11575181, 11175173)
Electron bunch length measurement is of great significance for optimizing IRFEL performance. An optical autocorrelation system using coherent transition radiation (CTR) would be set up to measure the electron bunch length at the IRFEL. CTR can be occurred when short electron bunches traverse a vacuum-metal interface. A Martin-Puplett interferometer allowed measurement of the autocorrelation of the CTR signal. The basic principle and the main components of Martin-Puplett interferometer are elaborated in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB040 Design of the Beam Diagnostics System for a New IR-FEL Facility at NSRL 181
 
  • J.H. Wei, X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (21327901, 11105141, 11575181)
A new IR-FEL has been commissioned at NSRL. This facility provides a final electron energy from 20 to 70 MeV, beam bunch with a macro-pulse length of 5~10 μs and a general micro-pulse repetition rate of 238 MHz, pulsed radiation with up to 100 mJ at about 0.3%~3% FWHM bandwidth. So a diagnostics system is necessary to monitor the performance of the bunch and the character of the FEL radiation, such as the beam position and profile, emittance, energy spread, laser intensity, etc. The beam diagnostics system mainly consists of Flags, a diagnostics beam line, BPMs, pop-in monitors and a FEL monitor system. This paper introduces the construction of this diagnostics system.
Corresponding author: ylyang@ustc.edu.cn
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB042 Design and Simulation of Button Beam Position Monitor for IR-FEL* 187
SUPSS072   use link to see paper's listing under its alternate paper code  
 
  • X.Y. Liu, P. Lu, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang, T.Y. Zhou, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: * Supported by the National Science Foundation of China (11575181, 11175173)
A new button-type beam position monitor(BPM) was designed for the IR-FEL project. Firstly, the longitudinal size of BPM needs to be short enough to save space because the entire machine of IR-FEL is very compact. And in the matter of installation problem, all four electrodes are deviated 30 degrees from the horizontal axis. Then, according to these two limited conditions and beam parameters, we builded up a simple model and did some simulated calculations to ensure a good performance of position resolution, which should be better than 50μm. The simulations include an estimation of induced signals in both time and frequency domains, horizontal and vertical sensitivities, mapping figures and so on. This button BPM will be manufactured in the near future and then we can do some off-line experiments to test it.
# Corresponding author (email: bgsun@ustc.edu.cn)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)