Author: Zhang, H.Y.
Paper Title Page
MOPMB038 Development of Shoebox BPM for Xi‘an Proton Application Facility 175
 
  • W. Wang, X. Guan, W.-H. Huang, X.W. Wang, Z. Yang, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • M.T. Qiu, Z.M. Wang
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  In this paper, development of the Shoebox BPM is presented which can be applied for the measurement of turn-by-turn position data, closed orbit and tune of Xi'an Proton Application Facility (XiPAF). The preliminary design of the physical dimensions including the electrode aperture, the pipe aperture and the gap between the two electrodes is performed by calculating their effects on BPM response respectively with the equivalent circuit model. Furthermore, the mechanical structure of the Shoebox BPM is optimized by CST simulation to achieve better performance. The dependency of the BPM sensitivity and zero offset on the frequency is diminished by adding one isolating ring, which decreases coupling capacitance of electrodes and compensates ground capacitance difference of the two electrodes. Finally one prototype of the Shoebox BPM has been fabricated and tested offline. Results show that relative position measurement error due to frequency dependency of sensitivity is less than 1% and absolute measurement error due to frequency dependency of zero offset is expected to be less than 0.1 mm.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW014 Design of the 7MeV Linac Injector for the 200MeV Synchrotron of the Xi'an Proton Application Facility 426
 
  • Q.Z. Xing, C. Cheng, C.T. Du, L. Du, T. Du, X. Guan, H. Jiang, C.-X. Tang, R. Tang, D. Wang, X.W. Wang, L. Wu, H.Y. Zhang, Q.Z. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
  • B.C. Wang, Z.M. Wang, W.L. Yang, Y. Yang, C. Zhao
    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Shannxi, People's Republic of China
 
  We present, in this paper, the design result of the 7 MeV linac which will inject the negative hydrogen ion beam to the downsteam synchrotron of the Xi‘an Proton Application Facility (XiPAF). This newly designed facility will be located in Xi'an city and provide the proton beam with the maximum energy of 230 MeV for the research of the single event effect. The 7 MeV linac injector is composed of the 50 keV negative hydrogen ion source, Low Energy Beam Transport line (LEBT), 3 MeV four-vane-type Radio Frequency Quadrupole (RFQ) accelerator, 7 MeV Alvarez-type Drift Tube Linac (DTL), and the corresponding RF power source system. The output beam of the linac injector is designed with the peak current of 5 mA, maximum repetition frequency of 0.5 Hz, beam pulse width of 10~40 μs and RMS normalized emittance of 0.24 π mm·mard.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR041 Design of the Low Energy Beam Transport Line for Xi‘an Proton Application Facility 1343
 
  • R. Ruo, L. Du, T. Du, X. Guan, C.-X. Tang, R. Tang, X.W. Wang, Q.Z. Xing, H.Y. Zhang, Q.Z. Zhang
    TUB, Beijing, People's Republic of China
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
 
  Xi‘an Proton Application Facility (XiPAF) is a new proton project which is being constructed for single-event-effect experiments. It can provide proton beam with the maximum energy of 200 MeV. The accelerator facility of XiPAF mainly contains a 7 MeV H linac injector and a proton synchrotron accelerator. The 7 MeV H linac injector is composed of an ECR ion source, a Low Energy Beam Transport line (LEBT), a Radio Frequency Quadrupole accelerator (RFQ) and a Drift Tube Linac (DTL). The 50 keV 10 mA H beam (pulse width 1ms) extracted from the ion source is expected to be symmetric with the Twiss parameters alpha=0 and β=0.065 mm/mrad. The RMS normalized emittance is required to be less than 0.2 π mm·mrad. With an adjustable collimator and an electric chopper in the 1.7 m-long LEBT, the beam pulse width of 10~40μs and peak current of 6 mA can be obtained. The H beam is matched into the downstream RFQ accelerator with alpha=1.051 and β=0.0494 mm/mrad. This paper shows the detailed design process of the LEBT and simulation result with the TRACEWIN code.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)