Author: Yue, Y.
Paper Title Page
TUYA01 BEPCII Performance and Beam Dynamics Studies on Luminosity 1014
 
  • C.H. Yu, Z. Duan, S. Gu, Y.Y. Guo, X.Y. Huang, D. Ji, H.F. Ji, Y. Jiao, Zh.C. Liu, Y.M. Peng, Q. Qin, Y.S. Sun, S.K. Tian, J.Q. Wang, N. Wang, X.H. Wang, Y. Wei, X.M. Wen, J. Wu, J. Xing, G. Xu, Y. Yue, C. Zhang, Y. Zhang
    IHEP, Beijing, People's Republic of China
 
  The upgrade of the Beijing Electron Positron Collider, BEPCII, is now in a good performance for both high energy physics and synchrotron radiation experiments. The luminosity at the design energy of 1.89 GeV reached the design value 1.0*1033/cm2/s1 recently. A lot of work, including accelerator physics study and technical progress, has been done for the luminosity enhancement, not only at the design energy, but all the energy region run for HEP experiments from 1.0 to 2.3 GeV. The performance of BEPCII and the process of luminosity enhancement will be described in detail.  
slides icon Slides TUYA01 [5.801 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR014 MDI Design in CEPC Partial Double Ring 3802
 
  • S. Bai, J. Gao, Y. Wang, Q.L. Xiu, W.C. Yao, Y. Yue
    IHEP, Beijing, People's Republic of China
 
  With the discovery of the higgs boson at around 125GeV, a circular higgs factory design with high luminosity (L ~ 1034 cm-2 s-1) is becoming more popular in the accelerator world. The CEPC project in China is one of them. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. Detector background, collimator and solenoid compensation are the most critical physics problem. Beamstrahlung is the problem which is never gotten into before in the existed electron positron collider of world history. Every kinds of background are bad for detector, and solenoid can make damage to accelerator beam. We will use a Monte Carlo simulation method to calculate and analysis the CEPC detector background and the harm it makes to detector. Anti-solenoid are designed to compensate the strong detector solenoid field of several tesla.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR017 Dynamic Aperture Optimization at CEPC with Pretzel Orbit 3808
 
  • H. Geng, S. Bai, X. Cui, Z. Duan, J. Gao, Y.Y. Guo, Y.M. Peng, Q. Qin, D. Wang, N. Wang, Y. Wang, G. Xu, Y. Yue, Y. Zhang
    IHEP, Beijing, People's Republic of China
  • W. Chou
    Fermilab, Batavia, Illinois, USA
  • F. Su
    Institute of High Energy Physics (IHEP), People's Republic of China
 
  A preliminary design of the CEPC ring with pretzel orbit will be presented. The ring and pretzel orbit will be designed for 50 bunches, as required in the CEPC Pre-CDR. The linear optics, as well as the non-linear chromaticity compensation with the presence of pretzel orbit will be described. Different phase advance difference between the long and short straight sections, have been tried to optimize the dynamic aperture, the results will be shown in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)