Author: Urakawa, J.
Paper Title Page
MOPMR016 A New Approach for the Electron Beam Diagnostic Using Diffraction Radiation Disphase Target 261
 
  • D.A. Shkitov, G.A. Naumenko, A. Potylitsyn
    TPU, Tomsk, Russia
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: The work was partially supported by the RFBR grant No 15-52-50028.
Since 1995, when the diffraction radiation (DR) from relativistic particles was first observed*, the development of new approaches using the DR for charged particle beam diagnostics is continued. The DR appears when charged particle moves close to the media and the electromagnetic field interacts with it. A rather well-known non-invasive diagnostic method of transversal bunch size is to use a slit target**. In paper*** the optical DR from disphase target was proposed to use for non-invasive diagnostics of high energy electron beam. Disphase target consists of the two rectangular flat plates inclined with respect to each other at an angle compared with 1/g, where g is the Lorentz-factor. Recently the feasibility of the disphase target usage for the 6 MeV electron beam size diagnostics was investigated****. In this report we present the further research of the disphase target beam diagnostics. The simulations of the spectral-angular DR characteristics from this target and it application for diagnostics aim are shown. These calculations confirm an applicability of this technique for micron size beam measurements for the case of g>1000.
*Y. Shibata et al. //PRE 52, 6787 (1995)
**P. Karataev et al. //PRL 93, 244802 (2004)
***G. Naumenko et al. //Proc. of PAC TOAD004, 404 (2005)
****E.V. Kornoukhova et al. //JPCS, in press (2016)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR040 First Steps Towards a Single-Shot Longitudinal Profile Monitor: Study of the Properties of Coherent Smith-Purcell Radiation Using the Surface Current Model 340
SUPSS069   use link to see paper's listing under its alternate paper code  
 
  • H. Harrison, G. Doucas, I.V. Konoplev, A.J. Lancaster
    JAI, Oxford, United Kingdom
  • A. Aryshev, K. Lekomtsev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: UK STFC, Leverhulme Trust, Photon and Quantum Basic Research Coordinated Development Program (Ministry of Education, Culture, Sports, Science and Technology, Japan)and JSPS KAKENHI.
We propose to use the polarization of coherent Smith-Purcell radiation (cSPr) to separate the signal from background radiation in a single-shot longitudinal bunch profile monitor. We compare simulation and experimental results for the degree of polarization of cSPr generated by a grating with a 1mm periodic structure at the LUCX facility, KEK (Japan). Both experiment and simulation show that the majority of the cSPr signal is polarized in the direction parallel to the grating grooves. The degree of polarization predicted by simulation is higher than the measured result, therefore further investigation is needed to resolve this discrepancy.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW016 Status of Design and Development of Delhi Light Source at IUAC, Delhi 748
 
  • S. Ghosh, R.K. Bhandari, G.K. Chaudhari, V.J. Joshi, D. Kabiraj, D. Kanjilal, B. Karmakar, J. Karmakar, N. Kumar, P. Patra, B.K. Sahu, A.S. Sharma, A.S. Sthuthikkatt Reghu
    IUAC, New Delhi, India
  • A. Aryshev, M.K. Fukuda, S. Fukuda, N. Terunuma, J. Urakawa, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Deshpande
    SAMEER, Mumbai, India
  • V. Naik, A. Roy
    VECC, Kolkata, India
  • T. Rao
    BNL, Upton, Long Island, New York, USA
 
  Funding: The project is supported jointly by Board of Research in Nuclear Sciences (BRNS) and IUAC
The demand for the photon beams for basic research is growing in India. To address the requirements, a project to develop a compact Light Source based on the principle of Free Electron Laser has been initiated at the Inter University Accelerator Centre (IUAC). In the first phase of the project, a normal conducting RF gun will be used to produce electron beam of energy ~ 8 MeV by using copper photocathode and subsequently by Cs2Te photocathode. A high power fiber laser with short pulse length is planned to be used to produce the pre-bunched electron beam by splitting the single laser pulse in to 16 pulses ("comb beam"). The electron beam will be injected in to a compact, variable gap undulator magnet to produce the THz radiation whose frequency can be tuned by varying the undulator field strength and the time separation of the comb beam. In the second and third phases of the project, superconducting RF gun and superconducting accelerating structure will be used to increase the energy of the electron beam up to ~ 40 MeV which will be used to produce IR radiation by using long undulator magnets and to produce X-rays by colliding the electron beam with another high power laser beam.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW006 Six-dimensional Phase-space Rotation and its Applications 1754
 
  • M. Kuriki, K. Negishi
    HU/AdSM, Higashi-Hiroshima, Japan
  • H. Hayano, R. Kato, K. Ohmi, M. Satoh, Y. Seimiya, J. Urakawa
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  Funding: This work is partly supported by Grant-in-Aid for Scientific Research by MEXT, Japan (KAKENHI) 25390126.
Recent progress on the accelerator science requires optimized phase space distributions of the beam for each applications. A classical approach to satisfy the requirements is minimizing the beam emittance with a bunch charge as much as possible. This classical approach is not efficient and not compatible to the beam dynamics nature. 6D phase-space rotation, e.g. z-x and x-y, gives a way to optimize the phase space distribution for various applications. In this article, we discus possible applications of the 6D phase space rotation. The x-y rotation generates the high aspect ratio beam for linear colliders directly without DR (Damping Ring). Combination of bunch clipping with a mechanical slit and x-z rotation can generate micro-bunch structure which is applicable for FEL enhancement and drive beam for dielectric acceleration. We present our theoretical and simulation study on these applications.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW036 Recent Developments and Operational Status of the Compact ERL at KEK 1835
 
  • T. Obina, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, R. Kato, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondo, T. Konomi, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sakanaka, S. Sasaki, K. Satoh, Y. Seimiya, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, N. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    QST, Tokai, Japan
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  The Compact Energy Recovery Linac (cERL) at KEK is a test accelerator in order to develop key components to realize remarkable ERL performance as a future light source. After the beam commissioning in December 2013, the legal current limit has been increased step-by-step like 1 uA, 10 uA, and 100 uA. Survey for the source of beam losses has been conducted in each step, and the study on beam dynamics and tuning has also been carried out. As a next step, 1 mA operation is scheduled in February 2016. In parallel to the increase in beam current, a laser Compton scattering (LCS) system which can provide high-flux X-ray to a beamline has been successfully commissioned. We report recent progress in various kinds of beam tuning: improvement of electron gun performance, high bunch charge operation, mitigation of beam losses, LCS optics tuning and bunch compression for THz radiation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW044 Experimental Investigation of THz Smith-Purcell Radiation From Composite Corrugated Capillary 1861
 
  • K. Lekomtsev, A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Ponomarenko, A.A. Tishchenko
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Terahertz part of electromagnetic spectrum has a variety of potential applications ranging from fundamental to security applications. Further advances in development of a linac based, tunable, and narrow band coherent source of THz radiation are very important. Mechanisms of Cherenkov radiation and Smith-Purcell radiation (SPR) [*] may be used for generation of THz radiation via coherent emission [**, ***]. In this report we will present experimental investigations of the SPR generated from the corrugated capillary with a reflector, using the femtosecond multi-bunch electron beam of LUCX accelerator at KEK, Japan [****]. LUCX is capable to generate a train of 4 bunches each with 200 femtosecond (60 micrometer) duration and 200 micrometer transverse size. We will discuss the composite design of the capillary, measurements of the SPR angular distributions and the comparison of these measurements with PIC simulations. In addition, we will discuss SPR spectral characteristics; bunch energy modulation, introduced by the corrugated capillary; and the way in which the bunch spacing changes the spectrum and angular distributions of SPR.
*K.Lekomtsev et al., NIMB 355 (2015) 164
**A. M. Cook et al., PRL 103, (2009) 095003.
***S. E. Korbly et al., PRL 94, (2005) 054803.
****A. Aryshev, arXiv:1507.03302 [physics.acc-ph]
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW045 Pre-bunched Electron Beam Emittance Simulation and Measurement 1864
 
  • Yu.D. Kliuchevskaia, S.M. Polozov
    MEPhI, Moscow, Russia
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  LUCX facility at KEK is used as the high brightness pre-bunched electron beam source for radiation experiments. Emittance measurement and optimization is one of the important research activities for newly developed operation mode of the facility. Characterization of the pre-bunched beam (THz sequence of a hundred femtosecond bunches) properties opens a possibility to establish detailed simulation of the THz FEL radiation yield and continuously improve pre-bunched beam dynamics insight. Emittance has been measured by the Q-scan method. The measurement results and possible ways of emittance optimization are discussed. The measurement results are compared with beam dynamics simulation done by self-consistent BEAMDULAC-BL code.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW046 Development and Upgrade Plan of an X-ray Source Based on Laser Compton Scattering in Laser Undulator Compact X-ray Source(LUCX) 1867
 
  • M.K. Fukuda, S. Araki, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • M. Kageyama, M. Kuribayashi
    Rigaku Corporation, XG & Core Technology, Tokyo, Japan
  • A. Momose, M.P. Olbinado, Y. Wu
    Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have been developing a compact X-ray source based on Laser Compton scattering(LCS) at Laser Undulator Compact X-ray source(LUCX) accelerator in KEK. Our aim is to obtain a clear X-ray image in a shorter period of times and the target number of X-ray is 1.7x107 photons/pulse with 10% bandwidth. In the accelerator, an electron beam with the energy of 18-24 MeV is generated by an S-band normal conducting accelerator. The beam is collided with a laser pulse stacked in a 4-mirror planar optical cavity and then 6-10 keV X-rays are generated by LCS. Presently, the generation of X-rays with the number of 3x106 photons/pulse at the collision point has been achieved. X-ray imaging test such as refraction contrast images and phase contrast imaging with Talbot interferometer has also started. To increase the intensity of X-rays, we are continuing the tuning of the electron beam and the optical cavity because the exposure time of X-ray imaging is too long now. We are also planning to increase the beam energy by appending the accelerating tube. In this conference, the recent results and upgrade plan in LUCX will be reported.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW047 Generation of a Coherent Cherenkov Radiation by using Electron Bunch Tilting 1870
 
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Japan
  • M. Nishida, M. Washio
    Waseda University, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  We have been developing a compact accelerator based a laser photocathode rf electron gun at Waseda University. Low emittance and short bunched electron beam can be generated from the gun. Also, the rf transverse deflecting cavity was developed for the bunch length measurement. We performed an experiment for generating a coherent Cherenkov radiation using bunch tilting. The rf transverse deflector can give a tilt for the electron bunch, and the tilt angle was set to the Cherenkov radiating angle which determined by the target refractive index. We successfully demonstrated a coherent Cherenkov radiation and the characterization of the radiation. The principle of coherent Cherenkov radiation generation, the experimental results and future prospective will be presented at the conference.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY037 Cold Model Cavity for 20-K Cryocooled C-band Photocathode RF Gun 2635
 
  • T. Tanaka, M. Inagaki, R. Nagashima, K. Nakao, K. Nogami, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryocooled 2.6-cell C-band photocathode RF gun is under development at Nihon University in collaboration with KEK. The RF characteristics of a pillbox-type 2.6-cell C-band RF cavity at 20 K were in agreement with the theoretical predictions. The result of the cold test for a cavity with the input coupler confirmed the same characteristics. Based on these results a refined cold model of the 20-K cryocooled photocathode RF gun has been designed using SUPERFISH and CST-STUDIO. The separation between the TM01 pi and the TM01 half-pi modes has been increased from 20 MHz to 52 MHz by extending the diameter of the cavity iris and reducing the disk thickness. The 2.6-cell structure has been modified from pillbox to ellipsoid-like type. The end-plate of the 0.6-cell cavity has a center hole for bead-pull measurements of the on-axis electric filed through the entire structure. Mounting of a photocathode assembly in the end-plate has not been considered, since the purpose is solely to measure the low-power and low-temperature RF characteristics. A new design for the input coupler has been employed. The cavity will be completed early in 2016.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY038 Optimization of C-band RF Input Coupler as a Mode Converter for 20-K Cryocooled Photocathode RF Gun 2638
 
  • T. Tanaka, M. Inagaki, R. Nagashima, K. Nakao, K. Nogami, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
Development of a cryocooled 2.6-cell C-band photocathode RF gun has been conducted at Nihon University in collaboration with KEK. An RF mode converter from square TE10 to circular TM01 mode has been employed as an RF input coupler that has a coupling coefficient of approximately 20 at 20 K to the 2.6-cell accelerating structure. In the previous design, the circular waveguide in the mode converter formed part of the accelerating cavity. After the cold test of the cavity completed in 2014, the coupler design was modified to work as a pure mode converter with a VSWR of 1 at 5712 MHz. From the design simulation using CST-STUDIO, the insertion loss in the converter is 0.2 %. The TM010 and TM011 modes excited in the circular waveguide were separated by several ten MHz from the accelerating frequency. The simulation has suggested that the amplitude of the transverse electric filed on the axis in the circular waveguide is reduced to approximately 2 % of that in the longitudinal direction.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB03 Ultrafast Electron Microscopy using 100 Femtosecond Relativistic-Energy Electron Beam 3183
 
  • J. Yang, K. Kan, K. Tanimura, Y. Yoshida
    ISIR, Osaka, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  An ultrafast detection technique on 100 fs time scales over sub-nanometer (even atomic) spatial dimensions has long been a goal for the scientists to reveal and understand the ultrafast structural-change induced dynamics in materials. In this paper, the generation of femtosecond electron pulses using the RF gun and the first prototype of femtosecond time-resolved relativistic-energy ultrafast electron microscopy (UEM) are reported. Finally, both relativistic-energy electron diffraction and image measurements in the UEM prototype are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW007 Cs2Te Photocathode Response Time Measurements and Femtosecond Comb Electron Beam Generation as a Milestone Towards Pre-Bunched Thz Fel Realization 3941
 
  • A. Aryshev, Y. Honda, K. Lekomtsev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI: 23226020 and 24654076
Currently there is a rapidly growing demand to increase the brightness of electron beams generated by conventional RF guns as well as to decrease the cost of the injector accelerator system for many research facilities worldwide. To address this demand we investigate one of the most important parameter of the high Q.E. conventional semiconductor Cs2Te photocathode, its response time. It sets the principle limitation for generated bunch length and hence maximum achievable beam brightness of electron diffraction and pre-bunched THz FEL facility's injectors. The experimental investigation was done at KEK: LUCX facility. The Cs2Te photocathode response time better than 250 fs was demonstrated. The generation of 4 micro-bunch comb electron beam with variable time separation as a crucial technology for pre-bunched THz FEL realization was achieved.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)