Author: Tanaka, H.
Paper Title Page
MOPOW019 Commissioning Status of the Extreme-Ultraviolet FEL Facility at SACLA 757
 
  • T. Sakurai, T. Asaka, N. Azumi, T. Hara, T. Hasegawa, T. Inagaki, T. Ishikawa, R. Kinjo, C. Kondo, H. Maesaka, T. Ohshima, Y. Otake, H. Tanaka, T. Tanaka, K. Togawa
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • T. Bizen, N. Hosoda, H. Kimura, S. Matsubara, S. Matsui
    JASRI/SPring-8, Hyogo-ken, Japan
 
  To equip SACLA with wide ability to provide a laser beams in EUV and soft X-ray regions to experimental users, we have constructed a new free electron laser facility for SACLA beamline-1. Injector components, such as a thermionic electron gun, two buncher cavities, a S-band standing wave accelerator, S-band travelling wave accelerator and their RF sources, were relocated from the SCSS test accelerator, which was a prototype machine of SACLA. At the downstream of a bunch compressor chicane, three C-band 40 MV/m acceleration units were newly installed to effectively boost a beam energy up to 470 MeV. Two in-vacuum undulators were remodeled by changing the period of magnet array from 15 mm to 18 mm to increase SASE intensity by a larger K-value of 2.1. Beam commissioning was started in autumn 2015. So far SASE radiation at a 33 nm wavelength driven by a 470 MeV electron beam was observed. We will install the third undulator in this winter to obtain SASE saturation and additional C-band accelerator units in the next summer to raise the maximum beam energy to 750 MeV. In this presentation, the overview of the facility and the commissioning status will be reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW019 SPring-8 Upgrade Project 2867
 
  • H. Tanaka, T. Ishikawa
    RIKEN SPring-8 Center, Hyogo, Japan
  • S. Goto, S. Takano, T. Watanabe, M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
 
  Plans are underway for the upgrade of the SPring-8 facility, targeting completion in the early 2020's. Sustainability is a key guiding principle for the fourth-generation X-ray source - a beam emittance of around 100 pm.rad is pursued simultaneously with substantial energy-saving. The three key features of the design are (i) to replace the main dipole electric magnets with permanent magnets, (ii) to reduce the electron beam energy from 8 to 6 GeV, and (iii) to use the SACLA linac as an injector. Lowering the beam energy leads to reduction of (a) beam emittance, (b) magnetic fields, (c) the lengths of ID straight sections to maintain larger spaces for the magnets, and (d) the RF power consumption. Timeshare use of the SACLA linac enables beam injection to the upgraded ring with a low-emittance and short-pulsed beam as well as a reduction of injector power consumption by stopping the present injector consisting of a 1-GeV linac and a booster synchrotron. The outline of the upgrade plan will be reported with the current status of R&D started in 2015.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY004 Integrated Green Function for Charged Particle moving along Bending Orbit 2997
 
  • K. Ohmi, S. Chen
    KEK, Ibaraki, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  Electro-magnetic field for moving charged particle is given by Liennard-Wiechert potential. The field contains high frequency component corresponding to synchrotron light, ω=3cγ3/(2ρ). The frequency is too high to study beam behavior generally. Green function integrated over beam distribution and/or over in a region σx/nx× σy/ny× σz/nz (nxyz ∼  10) is useful to study instability and emittance growth of the beam. The green function is regarded as the wake field for coherent synchrotron radiation in three dimension space.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR022 Non-linear Optimization of Storage Ring Lattice for the SPring-8 Upgrade 3440
 
  • K. Soutome, K.K. Kaneki, Y. Shimosaki, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  A project of upgrading the SPring-8 facility is ongoing to convert the present storage ring to a high-coherence hard X-ray source (SPring-8-II). To achieve the emittance value of less than 0.2 nmrad at 6 GeV, we adopted a 5-bend achromat lattice with dipoles having longitudinal field gradient. In this lattice the betatron phase between the two dispersion arcs was set to (2n+1)PI to suppress dominant harmful effects of chromaticity-correcting sextupoles. By detuning this phase, optimizing sextupole strengths in a cell and introducing octupoles, we obtained a sufficient dynamic aperture (DA) for beam injection even for the symmetry-broken ring having four long straight sections and a high-beta injection section. However, the off-momentum behavior such as the non-linear chromaticity still needs to be optimized to achieve the momentum acceptance (MA) of 3% or larger. We have thus been investigating the possibility to increase both the DA and MA by introducing several phase-matched sextupole pairs. The presentation will report the obtained results by this approach.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)