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Abstract
Electro-magnetic field for moving charged particle is

given by Liennard- Wiechert potential. Three dimensional
electro-magnetic field near a particle with a given trajectory
is calculated on grid space. The field is regarded as wake
field, which makes possible to evaluate behavior of entire
bunch. Effcts of coherent synchrotron radiation and/or space
charge force for relativistic beam can be studied by Green
function.

INTRODUCTION
A moving charged particle with position and velocity,

x,β = dx/d(ct) experiences Lorentz force from another
(source) charged particle at x′,β′ = dx′/d(ct′),

F = e(E + cβ × B) = e [E + β × (n × E)] (1)

The electro-magnetic field induced by the source particle is
given by [1]

E =
e

4πε0

[
n − β′

γ2κ3R2 +
n × ((n − β′) × α′)

κ3R

]
(2)

B =
1
c
n × E . (3)

where R = x − x′, R = |R |, n = R/R and κ = 1 − n · β′.
The relation of the times is expressed by

t = t′ +
R
c
. (4)

In accelerator society, time variable is the position along
beam line, s. Longitudinal variable is difference of arrival
time for a reference particle, z = βc(t0− t) = s− βct, where
t = 0 is arrival time of the reference particle, s = βct0.
Canonical momentum for z is ∆p/p0. The canonical mo-
menta (px ,py ) are normalized by p0 = mβ0γ0c. Electro-
magnetic field at s is induced by the source particle at a
different location, s′, which is determined by the time rela-
tion of Eq.(4). The time relation Eq.(4) is translated to

s = s′ + βR(x, y, s − s′) + z. (5)

Lienard-Wiechert potential, which specifies electro-
magnetic field of single particle, has a role of Green function.
For given charge distribution, Lorentz force, which a particle
with ~x = (x, y, z) and ~p = (px ,py , δ) experiences, is given
by

F̄ (~x, ~p, s) =
∫

F (~x, ~p, s; ~x′, ~p′s′)Ψ(~x′, ~p′; s′)d~x′d~p′ (6)

where Ψ is distribution of beam particles in phase space.
s′ is satisfied to Eq.(5) and px,y = βx,yγ/(β0γ0) ≈ βx,y .
We assume particles move the same trajectory with parallel
displacement in a traveling distance ∆s. Energy distribution
of the source particle is not considered. The distribution
is characterized by only ~x with the projection of the real
space, ψ(~x) =

∫
Ψd~p, and is kept for the traveling ∆s. This

assumption is valid for ∆s < βxy , where βxy is the beta
function in an accelerator optics. Integrating ∆s, momen-
tum/energy change is calculated by

∆~p =
Nre
γ

∫
~W (~x; ~x′)ψ(~x′)d~x′ (7)

where integral for s is done for only F,

~W (~x; ~x′) =
(

e2

4πε0

)−1 ∫
∆s

F (~x, s; ~x′, s′))ds (8)

F is independent of s, when particle move sufficiently in-
side from entrance of a bending magnet, so-called in ”sta-
tionary case”. F’s near entrance and exit are evaluated
and integrated step by step along s. Since particles move
along parallel displaced trajectory, Lorentz force has trans-
lation symmetry, F (~x, s; ~x′, s′) = F (~x − ~x′, s), therefore
W (~x; ~x′) = W (~x − ~x′).

Particle In Cell (PIC) simulation is popularly used to study
variation of the beam distribution. Macro-particle distribu-
tion is mapped on a meshed space. Force, which particles
experience, are evaluated by Eq.(8), where the integral is per-
formed onmeshed space andGreen function is better to be in-
tegrated in each mesh area, (xi±∆x/2, y j±∆y/2, zk±∆z/2).

F (~xi jk , s; 0,0) =
∫ ∫ ∫

∆x×∆y×∆z

F (~x, s; 0,0)d~x. (9)

The integrated Green function (IGF) gives Lorentz force
induced by uniform charge distribution in the area, or in
different word, averaged Lorentz force induced by single
charge. Higher frequency component than 1/∆x, y, z are cut
off, while numerical noise of high frequency component is
reluxed. The area size depends on which frequency range is
essential in target phenomenon.
IGF was used to calculate beam-beam force interacting

in colliders. For lepton colliders, beam aspect ratio is very
large σx/σy ≈ 100 at collision point; flat beam collision.
IGF was essential to obtain an accurate beam-beam force
for flat beam [2–4]. Here IGF is used to cut high frequency
component.
This paper is devoted to calculate the integrated Green

function for Lorentz force moving in a bending magnet in
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near field region. Lorentz force is singular for high γ. The
integration has to be done carefully with taking into account
the singular behavior.

ELECTRO-MAGNETIC FIELD NEAR
SOURCE PARTICLE IN BENDING

MAGNET
Electro-magnetic field for the stationary case is discussed

here [5–7]. Field at entrance and exit is discussed in similar
way and is discussed elsewhere. Figure 1 shows geomet-
rical relation in bending magnet. A source particle moves
reference orbit and arrives at s. Electro-magnetic field is
calculated near the source particle using Eq.(2). Coordinates
(x′, y′, ζ ′) for the source particle are obtained on the system
defined at s as shown in Fig. 1. Motion of source particle
(x′,β′,α′) is represented as function of θ = (s − s′)/ρ.

Figure 1: x′(z), ζ (z′).

Motion of the source particle is expressed by

x′ = ρ (cos θ − 1) ζ ′ = −ρ sin θ (10)

Rρ = R/ρ is given by

Rρ (x, y, θ) =
√
ζ ′2 + (x − x′)2 + y2/ρ

=

√
4(1 + xρ ) sin2

θ

2
+ x2ρ + y2ρ . (11)

where (x, y, z)ρ = (x, y, z)/ρ. zρ is represented as function
of (xρ , yρ , θ) by,

zρ = θ − β

√
4(1 + xρ ) sin2

θ

2
+ x2ρ + y2ρ . (12)

κ = dzρ/dθ is expressed by

κ = 1 − n · β = 1 −
β(1 + xρ ) sin θ

Rρ
. (13)

Lorentz force, Eqs.(1) to (3), are represented as func-
tions of (xρ , yρ , θ). Radiation part, 2nd term of Eq.(2), is
expressed by

E (r )
s =

β2

ρ2R3
ρ κ3

[
2 sin2

θ

2
(Rρ β − sin θ) (14)

+
{
Rρ β − sin θ(2 − cos θ)

}
xρ − (x2ρ + y2ρ ) sin θ

]
.

Fs = Es , because of Bs = 0. Lorentz force for horizontal
and vertical is expressed by

F (r )
x =

β2

ρ2R3
ρ κ3

[
sin2 θ + 4β2 sin2

θ

2
− 2Rρ β sin θ

+
(
sin2 θ + 4β2 sin2

θ

2
− Rρ β sin θ

)
xρ (15)

+ β2x2ρ + y2ρ cos θ
]

F (r )
y =

β2

ρ2R3
ρ κ3

[
2 sin2

θ

2
(1 + β2)

−Rρ β sin θ +
(
2 sin2

θ

2
−

1
γ2

)]
yρ . (16)

The force is calculated for SACLA beam extraction,
E = 8 GeV, ρ = 46.4 m, B = 0.57 T. Figure 2 shows
F (r ) , as function of z. F (r )

s (0,0,0) in Fig. 2(a) agrees
with the formula −2γ4/ρ2 = −5.6 × 1013 m−2 (deceler-
ation). F (r )

s (x,0, z > 0.01nm) is positive (acceleration) and
is weakly dependent on x. F (r )

s has different behavior for
positive or negative x also shown in Fig. 7 of Ref [6]. F (r )

x

is positive (repulsive) and is not symmetric for the sign of
x [8]. F (r )

y is negative(attractive).
Coulomb term, which is 1st term in Eq.(2), is calculated by

similar way. They are very weak compare with the radiation
terms at E=8 GeV.

Figure 2: Lorentz force near a point charge. (a) F (r )
s , (b)

F (r )
y and (c) F (r )

y .

INTEGRATED GREEN FUNCTION
Integrated Green function is obtained by integration in

area ∆x × ∆y × ∆z nearby (xi , y j , zk ),

F̄ (xi , y j , zk ) =
∫ ∫ ∫

∆x×∆y×∆z

F (x, y, θ)dzdxdy (17)

Lorentz force for a single charge is singular at ~x = 0, but its
for a charge distribution with a finite density is regular. For
beam-beam or space charge force, we have analytic form
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for the integration [3]. The formulae for Lienard-Wiechert
potential Eqs.(14)-(16) are too complex, thus numerical in-
tegration is performed. The numerical integral should be
converge, since the integral is regular.
Lorentz force/Green function inside a mesh area is inte-

grated with taking into account the micro-scopic behavior
shown in Fig. 2. Green function contains high frequency
component of λc = 4πρ/(3γ3) near ~x = 0. Integration
step is determined so as to take into account the high fre-
quency component. The steps are chosen to be ds = aγ2λc ,
dz = aλc , dx,dy = aγλc , where a is a factor for the step
size. Figure 3 shows convergence of the integrated Green
Function of nearest mesh at ~x = 0, x = 0 ∼ ∆x, y = 0 ∼ ∆y,
z = 0 ∼ ∆z. Convergence for meshes far from ~x = 0 is bet-
ter. The integrated Green function is given with a sufficient
accuracy (< 1%) for a < 0.1.

Figure 3: Convergence of Integrated Green function at for
integration step.

We calculated integrated Green function using a = 0.01
with a safety margin. Figure 4 shows the integrated Green
function for F (r )

s along z. Three points are given for x =
2.5,7.5,−7.5 µm. Plots (b) focus to positive z area; accel-
eration force for leading particles. The plot (b) agrees with
analytical formula (dashed line) perfectly. Lorentz force
is dependent on x for z = ±0.05 µm, but is independent
for z > 0.1 µm. The same behavior is seen also in micro-
scopic as shown in Fig. 2. Figures 5 and 6 shows integrated
Green function for the transverse radiation part, F (r )

x and
F (r )
y , respectively. Plots (a) and (b) is downstream (z < 0)

and upstream (z > 0) of the source particle. The horizontal
force for negative z in plot (a) has singular behaviors at pos-
itive x. The behaviors are seen in the tangential direction
of the orbit. The vertical force is 1 or 2 orders smaller than
horizontal ones. It is focusing for negative z, but defocusing
for positive z.
Figure 7 shows Lorentz force convoluted by beam distri-

bution, Ne = 1.7 × 109 (270 pC). The angular divergence of
the beam is σpx = 2.3µrad. The transverse force, which is
sexupolar, is not negligible compare with the beam angular
divergence.

Figure 4: Integrated Green function at for integration step.

Figure 5: Integrated Green function at for integration step.

Figure 6: Integrated Green function at for integration step.

Figure 7: Convoluted beam kick. Sum. of radiation and
Coulomb force. SACLA final branch line.

CONCLUSIONS
Integrated Green function in bending magnet was ob-

tained from single charge Liennard-Wiechert field. 3 dimen-
tional wake force due to synchrotron radiation was estimated.
The longitudinal force has been studied for a long time. The
transverse force did not seem negligible for SACLA final
branch to multi-beam line.
The authors thanks fruitful discussions with T. Hara, T.

Inagaki, Y. Cai, A. Novokhatski, D. Zhou, and G. Stupakov.
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