Author: Shao, J.H.
Paper Title Page
TUPOW014 Simulation of High Resolution Field Emission Imaging in an rf Photocathode Gun 1769
 
  • J.H. Shao, H.B. Chen, J. Shi, X.W. Wu
    TUB, Beijing, People's Republic of China
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • W. Gai
    ANL, Argonne, Illinois, USA
  • F.Y. Wang
    SLAC, Menlo Park, California, USA
 
  Precisely locating field emission (FE) emitters on a realistic surface in rf structures is technically chal-lenging in general due to the wide emitting phase and the broad energy spread. A method to achieve in situ high resolution FE imaging has been proposed by using solenoids and a collimator to select electrons emitted at certain phases. The phase selection criterion and imaging properties have been studied by the beam dynamics code ASTRA. Detailed results are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW015 Experiment of High Resolution Field Emission Imaging in an rf Photocathode Gun 1772
 
  • J.H. Shao, H.B. Chen, J. Shi, X.W. Wu
    TUB, Beijing, People's Republic of China
  • S.P. Antipov, S.V. Baryshev, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, G. Ha, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • F.Y. Wang
    SLAC, Menlo Park, California, USA
 
  The first in situ high resolution field emission (FE) imaging experiment has been carried out on an L-band photocathode gun test stand at Argonne Wakefield Accelerator facility (AWA). Separated strong emitters have been observed to dominate the field emission. Field enhancement factor, beta, of small regions on the cathode has been measured with the imaging system. It is shown that most strong emitters overlaps with the high beta regions. The post surface examinations reveal the origins of ~75% strong emitters overlap with the spots where rf breakdown have occurred. Detailed results are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW016 Development of a C-Band 4/8 Mev Dual-Energy Accelerator for Cargo Inspection System 1775
 
  • J.H. Shao, H.B. Chen, W.-H. Huang, Q.X. Jin, Y.H. Liu, J. Shi, C.-X. Tang, X.W. Wu
    TUB, Beijing, People's Republic of China
 
  Modern cargo inspection system applies dual-energy X-ray for material discrimination. Based on the com-pact C-band 6 MeV standing-wave accelerating struc-tures developed at Tsinghua University, a compact C-band 4/8 MeV dual-energy accelerator has been pro-posed, fabricated and tested. Compared with that of the conventional S-band 3/6 MeV dual-energy accelera-tor at Tsinghua University, the volume and the weight of the C-band one has been reduced by ~40% and ~30%, respectively. Detailed review of this C-band dual-energy accelerator is present in the paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)