Author: Sermeus, L.
Paper Title Page
TUPMR049 Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode 1363
 
  • T. Kramer, W. Bartmann, J.C.C.M. Borburgh, L. Ducimetière, L.M.C. Feliciano, A. Ferrero Colomo, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying the performance of upgrade options have been taken during the last end of the year stop. The paper concludes with an upgrade plan and a brief overview of implementation risks.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW030 Studies of Impedance-related Improvements of the SPS Injection Kicker System 3611
 
  • M.J. Barnes, A. Adraktas, M.S. Beck, G. Bregliozzi, H.A. Day, L. Ducimetière, J.A. Ferreira Somoza, B. Goddard, T. Kramer, C. Pasquino, G. Rumolo, B. Salvant, L. Sermeus, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Zannini
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The injection kicker system for the SPS consists of sixteen magnets housed in a total of four vacuum tanks. The kicker magnets in one tank have recently limited operation of the SPS with high-intensity beam: this is due to both beam induced heating in the ferrite yoke of the kicker magnets and abnormally high pressure in the vacuum tank. Furthermore, operation with the higher intensity beams needed in the future for HL-LHC is expected to exacerbate these problems. Hence studies of the longitudinal beam coupling impedance of the kicker magnets have been carried out to investigate effective methods to shield the ferrite yoke from the circulating beam. The shielding must not compromise the field quality or high voltage behaviour of the kicker magnets and should not significantly reduce the beam aperture: results of these studies, together with measurements, are presented. In addition results of tests to identify the causes of abnormal outgassing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)