Author: Senaj, V.
Paper Title Page
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW035 Considerations on an Upgrade Possibility of the LHC Beam Dump Kicker System 3631
 
  • M.A. Fraser, W. Bartmann, C. Bracco, L. Ducimetière, B. Goddard, T. Kramer, V. Senaj
    CERN, Geneva, Switzerland
 
  The LHC Beam Dump System (LBDS) is designed to safely dispose the circulating beams over a wide range of energy from 450 GeV up to 7 TeV, where the maximum stored energy is 362 MJ per beam. One of the most critical components of the LBDS are the extraction kickers that must reliably switch on within the 3 us particle-free abort gap. To ensure this functionality, even in the event of a power-cut, the power generator capacitors remain charged and hence the Gate Turn-Off (GTO) switch stack has to hold the full voltage throughout beam operation. The increase of the LHC collision energy to 13 TeV has increased the voltage levels at the GTO stacks and during re-commissioning an increased rate of high-voltage (HV) related issues at the level of the GTO stack was observed. Different solutions have been analysed and an improved GTO stack will be implemented. This paper also outlines the benefit of adding more kicker magnets to improve the voltage hold off issues and to improve the tolerance to missing kickers during extraction.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR049 Considerations for the Injection and Extraction Kicker Systems of a 100 TeV Centre-of-Mass FCC-hh Collider 3901
 
  • T. Kramer, M.J. Barnes, W. Bartmann, F. Burkart, L. Ducimetière, B. Goddard, V. Senaj, T. Stadlbauer, D.G. Woog
    CERN, Geneva, Switzerland
  • D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  A 100 TeV center-of-mass energy frontier proton collider in a new tunnel of ~100 km circumference is a central part of CERN's Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam injection and extraction. This paper outlines the recent developments on the injection and extraction kicker system concepts. For injection the system requirements and progress on a new inductive adder design will be presented together with first considerations on the injection kicker magnets. The extraction kicker system comprises the extraction kickers itself as well as the beam dilution kickers, both of which will be part of the FCC beam dump system and will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule. First concepts for the beam dump kicker magnet and generator as well as for the dilution kicker system are described and its feasibility for an abort gap in the 1 μs range is discussed. The potential implications on the overall machine and other key subsystems are outlined, including requirements on (and from) dilution patterns, interlocking, beam intercepting devices and insertion design.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)