Author: Rude, V.
Paper Title Page
WEPOR018 Position Monitoring System for HL-LHC Crab Cavities 2704
 
  • M. Sosin, T. Dijoud, H. Mainaud Durand
    CERN, Geneva, Switzerland
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  The high luminosity upgrade for the LHC at CERN (HL-LHC project) will extend the discovery potential of the LHC by a factor 10. It relies on key innovative technologies like superconducting cavities for beam rotation, named 'crab cavities'. Two crab cavities will be hosted in a superconducting cryostat working at a cold (<3 K). The position of each cavity will be monitored during the cool-down and the operation in order to comply with the tight alignment tolerances: the misalignment of a cavity axis w.r.t. the other will have to be lower than 0.5 mm and each cavity roll w.r.t. the cryostat axis will have to be lower than 1 mrad. Moreover, the monitoring system will have to be radiation hard (up to 10 MGy) and maintenance free. We propose a solution based on the Frequency Scanning Interferometry to provide the position monitoring of the crab cavities. This paper describes the design and study of such a solution, including the engineering approach, the issues encountered and the lessons learnt.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR033 Integration and Testing of 3 Consecutive CLIC Two-Beam Modules 3856
 
  • A.L. Vamvakas, M. Aicheler, S. Döbert, M. Duquenne, H.M. Durand, M. Sosin, J.I. Väinölä
    CERN, Geneva, Switzerland
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  CLIC (Compact LInear Collider) is a study of a 50 km long linear electron-positron collider, consisting of ap-proximately 20,000 repetitive 2 m long modules. Micron level manufacturing and alignment tolerances are re-quired for the RF and magnet components due to the nanometre beam size and luminosity goal. The effect of thermal, vacuum and mechanical loads needs to be as-sessed, both in transient and in steady state conditions. The dynamic behaviour of mock-ups was investigated on the prototype two-beam module. Two additional two-beam modules are installed to further investigate the interconnections between them, in a machine-like envi-ronment. The array of three consecutive modules allows for alignment tests of the module sequence, while thermal and vacuum tests can be executed simultaneously. A transportation experiment is foreseen, investigating the feasibility of installing prealigned modules. Finally, new design of components is being tested, based on the expe-rience gathered from the first module and leading to a new generation module.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)