Author: Ruan, J.
Paper Title Page
TUPMY038 Preliminary Measurement of the Transfer Matrix of a TESLA-type Cavity at FAST 1632
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • N. Eddy, D.R. Edstrom, A. Lunin, P. Piot, J. Ruan, J.K. Santucci, J.K. Santucci, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  Funding: US Department of Energy (DOE) under contract DE-SC0011831 with Northern Illinois University. Fermilab is operated by the Fermi Research Alliance LLC under US DOE contract DE-AC02-07CH11359.
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread application in Science and Industry. Many current and planned projects employ 1.3-GHz 9-cell superconducting cavities of the TESLA design*. In the present paper we discuss the transverse-focusing properties of such a cavity and non-ideal transverse-map effects introduced by field asymmetries in the vicinity of the input and high-order-mode radiofrequency (RF) couplers**. We especially consider the case of a cavity located downstream of an RF-gun in a setup similar to the photoinjector of the Fermilab Accelerator Science and Technology (FAST) facility. Preliminary experimental measurements of the CC2 cavity transverse matrix were carried out at the FAST facility. The results are discussed and compared with analytical and numerical simulations.
* A. Aunes et al., Phys. Rev.ST Accel. Beams 3, 092001 (2000).
** P. Piot, el. al., Proc. 2005 Part. Accel. Conf., Knoxville, TN, p. 4135 (2005).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY021 Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling 3024
 
  • M.B. Andorf, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • V.A. Lebedev, P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the US DOE under contract DE-SC0013761 with Northern Illinois University. Fermilab is operated by the Fermi Research Alliance LLC under US DOE contract DE-AC02-07CH11359.
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.
* A. Zholents, and M. Zolotorev. Proc. PAC'97, 1805 (1998).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY022 Light Optics for Optical Stochastic Cooling 3028
SUPSS058   use link to see paper's listing under its alternate paper code  
 
  • M.B. Andorf, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • V.A. Lebedev, P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the US DOE under contract DE-SC0013761 with Northern Illinois University. Fermilab is operated by the Fermi Research Alliance LLC under US DOE contract DE-AC02-07CH11359.
In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.
* V. Lebedev, et al., Proc. COOL'15 (in press, 2015).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW021 Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique 3983
SUPSS020   use link to see paper's listing under its alternate paper code  
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.R. Edstrom, P. Piot, J. Ruan, J.K. Santucci
    Fermilab, Batavia, Illinois, USA
  • W. Gai, G. Ha, J.G. Power, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Qiang
    TUB, Beijing, People's Republic of China
 
  Funding: Northern Illinois University - US DOE contract No. DE-SC0011831. Fermilab - US DOE contract No. DE-AC02-07CH11359. The Argonne wakefield facility - US DOE contract No. DE-AC02-06CH11357.
In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)