Author: Rehm, G.
Paper Title Page
MOPMR036 Using a Single Shot Spectrometer to Determine the Spectral Characteristics of the Beam as a Result of Micro-bunching Instabilities 327
SUPSS068   use link to see paper's listing under its alternate paper code  
 
  • A. Finn, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  A single shot spectrometer has been designed and is in operation at the Diamond Light Source (DLS). It is an array of eight Schottky barrier diodes (SBDs) each with a distinct frequency band covering 33-1000 GHz. The aim of the spectrometer is to observe the bursts of coherent synchrotron radiation (CSR) as a result of micro-bunching instabilities (MBI) and stable low alpha modes, where alpha is the momentum compaction factor. In this case, the bursts of CSR occur with wavelengths in the mm regime. SBDs are often implemented as detectors in the millimetre wavelength range and benefit from low noise, excellent sensitivity and ultra-fast responses. The eight SBDs have been individually characterised thus making the results obtained comparable to simulations. Here we present, an analysis of the data obtained via the spectrometer in particular, the bursting nature and spectral characteristics of a sample of beam modes at DLS. Furthermore, the results obtained can be used to confirm simulations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR013 Analysis of Multi-bunch Instabilities at the Diamond Storage Ring 1685
 
  • R. Bartolini, R.T. Fielder, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  We present recent results of analytical, numerical and experimental analysis of multi-bunch instabilities at the Diamond storage ring. The works compares the impedance estimates from numerical modelling with the analysis of the growth rates of the excited multi-bunch modes in different machine configurations. The contribution of a number of wakefield sources has been identified with very high precision thanks to high quality data provided by the existing Transverse multi-bunch feedback diagnostics  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW048 Preparations for the Double Double Bend Achromat Installation in Diamond Light Source 2953
 
  • R.P. Walker, C.A. Abraham, C.P. Bailey, R. Bartolini, P. Coll, M.P. Cox, N.P. Hammond, M.T. Heron, S.E. Hughes, J. Kay, I.P.S. Martin, S.P. Mhaskar, A.G. Miller, A.J. Reed, G. Rehm, E.C.M. Rial, A.J. Rose, A. Shahveh, H.S. Shiers, A. Thomson
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  We present the status of preparations for a major installation in the Diamond storage ring which is due to take place in 2016, namely the conversion of one cell of the ring from a double bend achromat (DBA) structure, to a double-DBA, or DDBA. We present results of measurements of the new narrow bore, high strength, quadrupoles and sextupoles, as well as the four new gradient dipoles. Fabrication of entirely new narrow-gap vacuum vessel strings, a mixture of copper and stainless steel is also described. The status of assembly of the two 7m long girders is presented, as well as other preparatory engineering, power supply, controls and high level software work.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)