Author: Raginel, V.
Paper Title Page
TUPMB038 Degradation of the Insulation of the LHC Main Dipole Cable when Exposed to High Temperatures 1186
 
  • V. Raginel, B. Auchmann, D. Kleiven, R. Schmidt, A.P. Verweij, D. Wollmann
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
The energy stored in the LHC beams is substantial and requires a complex machine protection system to protect the equipment. Despite efficient beam absorbers, several failure modes lead to some limited beam impact on superconducting magnets. Thus it is required to understand the damage mechanisms and limits of superconducting magnets due to instantaneous beam impact. This becomes even more important due to the future upgrade of CERNs injector chain for the LHC that will lead to an increase of the beam brightness. A roadmap to perform damage tests on magnet parts has been presented previously*. The polyimide insulation of the superconducting cable is identified as one of the critical elements of the magnet. In this contribution, the experimental setup to measure the insulation degradation of LHC main dipole cables due to exposure to high temperature is described. Compressed stacks of insulated Nb-Ti cables have been exposed to a heat treatment within an Argon atmosphere. After each heat treatment, high-voltage measurements verified the dielectric strength of the insulation. The results of this experiment provide an upper damage limit of superconducting magnets due to beam impact.
* Experimental Setups to Determine the Damage Limit of Superconducting Magnets for Instantaneous Beam Losses, V. Raginel et al, IPAC'15
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY044 Experimental Setup to Measure the Damage Limits of Superconducting Magnets due to Beam Impact at CERN's HiRadMat Facility 4200
 
  • D. Kleiven
    Kleiven, David, Geneva, Switzerland
  • B. Auchmann, V. Raginel, R. Schmidt, A.P. Verweij, D. Wollmann
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project
The future upgrade of CERN's injector chain for the Large Hadron Collider (LHC) will lead to an increase of the beam brightness in the LHC. Beam absorbers are capturing missteered beams, but some limited beam impact on superconducting magnets can hardly be avoided. Therefore, it is planned to measure the damage limits of superconducting magnet components due to beam impact at CERN's HiRad- Mat facility using the 440 GeV proton beam from the Super Proton Synchrotron. Two experiments are proposed. One at ambient and one at cryogenic temperatures, where several pre-stressed stacks of LHC main dipole Nb-Ti cables and some single strands will be irradiated with varying beam intensities. The electrical integrity and the degradation of critical current will be measured after the removal from the HiRadMat facility. In the cold experiment some sample magnets will be added and the degradation of performance will be monitored online. In this contribution the experimental setup of the first experiment, including the sample container and cable stacks, is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)