Author: Qiu, J.
Paper Title Page
TUPMB007 Research and Development of the Pulse Bump Magnet for the Injection System in CSNS/RCS 1118
 
  • L. Huo, M.Y. Huang, W. Kang, Y.Q. Liu, J. Qiu, L. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  The H stripping painting injection is adopted in the Rapid Cycling Synchrotron (RCS) of China Spallation Neutron Source (CSNS). Painting injection is realized by eight pulse bump magnets. The pulse bump magnet is the key of the performance of painting, as well as the beam loss control. The manufacture and the field measurement of the eight pulse bump magnets have been completed. In the development of the magnets, some key technical problems on fabrication of coil were solved, and the field measurement results show that the magnets fulfil the design specification.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAA02 On-axis Beam Accumulation Enabled by Phase Adjustment of a Double-frequency RF System for Diffraction-limited Storage Rings 2032
 
  • G. Xu, J. Chen, Z. Duan, J. Qiu
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (Y4113G005C)
Future synchrotron light sources aim to achieve ultra- low emittances on both transverse planes, approaching or even reaching the diffraction limit of X-ray photon energies. These diffraction-limited storage rings (DLSRs) feature very strong lattice nonlinearities and thus very small dynamic aperture, which exclude off-axis injection schemes. In this paper, we propose a longitudinal on-axis injection scheme, which is based on a double-frequency RF system and in- dependently adjustment of the RF phase of each cavity to enable RF gymnastics. Such a scheme looks feasible with the state-of-art technology of fast injection kicker. Compari- son with other on-axis injection schemes is also discussed.
 
slides icon Slides WEOAA02 [1.712 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW026 Recent Physical Studies for the HEPS Project 2886
 
  • G. Xu, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, X.Y. Li, Y.M. Peng, Q. Qin, J. Qiu, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre- scale storage ring light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing and now is under design. In this paper we reported the progress and status of the physical studies for the HEPS project, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)