Author: Porqueddu, R.
Paper Title Page
WEPMR041 RF and Mechanical Design of 647 MHz 5-Cell BNL4 Cavity for eRHIC ERL 2364
 
  • W. Xu, I. Ben-Zvi, H. Hahn, G.T. McIntyre, C. Pai, R. Porqueddu, K.S. Smith, J.L. Tuozzolo, J.E. Tuozzolo, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
A 647 MHz 5-cell cavity has been designed for the envisioned EIC at BNL which is configured as an eRHIC ERL with a FFAG lattice to achieve the necessary e-p luminosity. The cavity was optimized to allow propagation of all HOMs out of the cavity for high BBU threshold current and low HOM power (loss factor). eRHIC will collide the electron beam over a wide energy range with protons from 40 GeV to 250 GeV, which requires the cavity to tune up to 170 kHz at 2 K. This poses a true challenge to the mechanical design of the SRF cavity. This paper will present the RF and mechanical designs of the 647 MHz 5-cell cavity, and status of the cavity fabrication will be addressed as well.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR042 Ridge Waveguide HOM Damping Scheme for High Current SRF Cavity 2367
 
  • W. Xu, I. Ben-Zvi, Y. Gao, H. Hahn, G.T. McIntyre, R. Porqueddu, V. Ptitsyn, K.S. Smith, R. Than, J.L. Tuozzolo, C. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
HOM damping is a challenge for high-current SRF linacs possibly generating HOM power at a level of 10 KW per cavity. A rectangular waveguide used as a natural high pass filter is a good option as high power, large spectrum HOM damper. However, its size is too big, causing a big challenge for the cooling and cryogenic system. A reliable, compact HOM damping scheme using a ridged waveguide is being developed to damp high power (> 10 kW), large spectrum HOMs ( up to 40 GHz) that may be generated in the 647 MHz 5-cell eRHIC ERL SRF linac. The size of a ridged waveguide is less than a quarter of the regular waveguide, which alleviates the thermal issue. This paper presents the design of a ridged waveguide and estimated HOM damping results using a ridged waveguide. The thermal or cooling design of the ridged waveguide will also be addressed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)