Author: Pan, W.M.
Paper Title Page
WEOBA02 Commissioning of the China-ADS Injector-I Testing Facility 2048
 
  • F. Yan, J.S. Cao, Y.L. Chi, R. Ge, H. Geng, S. Gu, D.Z. Guo, T.M. Huang, X. Jing, H. Li, R.L. Liu, F. Long, C. Meng, H.F. Ouyang, W.M. Pan, Q.L. Peng, Y.F. Sui, J.L. Wang, S.C. Wang, Z. Xue, Q. Ye, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The ion source was installed since April of 2014, periods of commissioning are regularly scheduled between installation phases of the rest of the injector. 6.05 MeV proton energy has been achieved with average beam current of 10 mA by 7 SC spoke cavities at present. This contribution reports the details of the commissioning results together with the challenges of the CW machine commissioning.  
slides icon Slides WEOBA02 [5.243 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB031 Post Processing of Spoke Type Superconducting Cavities at Institute of High Energy Physics 2191
 
  • J. Dai, J.P. Dai, F.S. He, X. Huang, L.H. Li, Z.Q. Li, H.Y. Lin, Z.C. Liu, B. Ni, W.M. Pan, P. Sha, G.W. Wang, Q.Y. Wang, Z. Xue, X.Y. Zhang, G.Y. Zhao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Chinese Academy of Science strategic Priority Research Program-Future Advanced Nuclear Fission Energy.
After upgrading the post-processing system, several superconducting cavities were RF tested at Institute of High Energy Physics (IHEP) in China recently. The test results of 14 spoke 012 cavities and 6 spoke 021 cavities which used at China ADS injector I and linac all exceeds our design objective. Moreover, a spoke 040, a 650MHz elliptical cavity and a 325MHz HWR cavity are also vertical tested and the test results are all significantly surpass our design value. The post processing of these cavities including Buffered Chemical Polishing (BCP), high temperature heat treatment and High Pressure water Rinsing (HPR) is presented here.
daijin@pku.edu.cn
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)