Author: Pai, C.
Paper Title Page
MOPMY007 Mechanical Design and 3-D Coupled RF, Thermal-Structural Analysis of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac 525
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, M.C. Grau, C. Pai, L. Snydstrup, J.E. Tuozzolo, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
Two normal conducting cavities operating at 704 MHz and 2.1 GHz will be used for the Low Energy RHIC electron Cooling (LEReC) under development at BNL to improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon. The single cell 704 MHz cavity and the 3-cell 2.1 GHz third harmonic cavity will be used in LEReC to correct the energy spread introduced in the SRF cavity. The successful operation of normal RF cavities has to satisfy both RF and mechanical requirements. 3-D coupled RF-thermal-structural analysis has been performed on the cavities to confirm the structural stability and to minimize the frequency shift resulting from thermal and structural expansion. In this paper, we will present an overview of the mechanical design, results from the RF-thermal-mechanical analysis, progress on the fabrication and schedule for the normal conducting RF cavities for LEReC.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY009 HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac 528
 
  • B. P. Xiao, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, J.C. Brutus, A.V. Fedotov, H. Hahn, G.T. McIntyre, C. Pai, K.S. Smith, J.E. Tuozzolo, Q. Wu, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE.
To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10-4. The HOM in this Linac is carefully studied to ensure this specification.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY010 RF Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac 532
 
  • B. P. Xiao, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, J.C. Brutus, A.V. Fedotov, H. Hahn, G.T. McIntyre, C. Pai, K.S. Smith, J.E. Tuozzolo, Q. Wu, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • S.A. Belomestnykh, I. Ben-Zvi, T. Xin
    Stony Brook University, Stony Brook, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE.
To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. Currently these two cavities are under fabrication. In this paper we report the RF design of these two cavities.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR041 RF and Mechanical Design of 647 MHz 5-Cell BNL4 Cavity for eRHIC ERL 2364
 
  • W. Xu, I. Ben-Zvi, H. Hahn, G.T. McIntyre, C. Pai, R. Porqueddu, K.S. Smith, J.L. Tuozzolo, J.E. Tuozzolo, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
A 647 MHz 5-cell cavity has been designed for the envisioned EIC at BNL which is configured as an eRHIC ERL with a FFAG lattice to achieve the necessary e-p luminosity. The cavity was optimized to allow propagation of all HOMs out of the cavity for high BBU threshold current and low HOM power (loss factor). eRHIC will collide the electron beam over a wide energy range with protons from 40 GeV to 250 GeV, which requires the cavity to tune up to 170 kHz at 2 K. This poses a true challenge to the mechanical design of the SRF cavity. This paper will present the RF and mechanical designs of the 647 MHz 5-cell cavity, and status of the cavity fabrication will be addressed as well.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW043 Observation of Beam-induced Abort Kicker Ferrite Heating in RHIC 3648
 
  • C. Montag, L. Ahrens, K.A. Drees, H. Hahn, J.-L. Mi, C. Pai, J. Sandberg, T.C. Shrey, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
During the FY 2013 RHIC polarized proton run, deterioration of the abort kicker system was observed. The reduced kicks resulted in quenching the superconducting quadrupole Q4 downstream of the beam dump. Frequent re-tuning of the modulator wave form temporarily mitigated the effect, which worsened during the course of the run. Beam-induced heating of the kicker ferrites was evenutally identified as the root cause of this behavior. We report our observations and discuss modifications to the kickers.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)