Author: Muggli, P.
Paper Title Page
WEPMY019 AWAKE, the Advanced Proton Driven Plasma Wakefield Acceleration Experiment 2588
 
  • P. Muggli
    MPI, Muenchen, Germany
  • C. Bracco
    CERN, Geneva, Switzerland
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment is currently being installed in the former CNGS facility and will use the 400 GeV/c proton beam bunches from the SPS to drive the wakefields in the plasma. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated with GeV/m gradients. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY020 Integration of a Terawatt Laser at the CERN SPS Beam for the AWAKE Experiment on Proton-Driven Plasma Wake Acceleration 2592
 
  • V. Fedosseev, M. Battistin, E. Chevallay, N. Chritin, V. Clerc, T. Feniet, F. Friebel, F. Galleazzi, P. Gander, E. Gschwendtner, J. Hansen, C. Heßler, M. Martyanov, A. Masi, A. Pardons, F. Salveter, K.A. Szczurek
    CERN, Geneva, Switzerland
  • M. Martyanov, J.T. Moody, P. Muggli
    MPI-P, München, Germany
 
  In the AWAKE experiment a high-power laser pulse ionizes rubidium atoms inside a 10 m long vapor cell thus creating a plasma for proton-driven wakefield acceleration of electrons. Propagating co-axial with the SPS proton beam the laser pulse seeds the self-modulation instability within the proton bunch on the front of plasma creation. The same laser will also generate UV-pulses for production of a witness electron beam using an RF-photoinjector. The experimental area formerly occupied by CNGS facility is being modified to accommodate the AWAKE experiment. A completely new laser laboratory was built, taking into account specific considerations related to underground work. The requirements for AWAKE laser installation have been fulfilled and vacuum beam lines for delivery of laser beams to the plasma cell and RF-photoinjector have been constructed. First results of laser beam hardware commissioning tests following the laser installation will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY039 RF Synchronization and Distribution for AWAKE at CERN 3743
 
  • H. Damerau, D. Barrientos, T. Bohl, A.C. Butterworth, S. Döbert, W. Höfle, J.C. Molendijk, S.F. Rey, U. Wehrle
    CERN, Geneva, Switzerland
  • J.T. Moody, P. Muggli
    MPI-P, München, Germany
 
  The Advanced Wakefield Experiment at CERN (AWAKE) requires two particle beams and a high power laser pulse to arrive simultaneously in a rubidium plasma cell. A proton bunch from the SPS extracted about once every 30 seconds must be synchronised with the AWAKE laser and the electron beam pulsing at a repetition rate of 10 Hz. The latter is directly generated using a photocathode triggered by part of the laser light, but the exact time of arrival in the plasma cell still depends on the phase of the RF in the accelerating structure. Each beam requires RF signals at characteristic frequencies: 6 GHz, 88.2 MHz and 10 Hz for the synchronisation of the laser pulse, 400.8 MHz and 8.7 kHz for the SPS, as well as 3 GHz to drive the accelerating structure of the electron beam. A low-level RF system has been designed to generate all signals derived from a common reference. Additionally precision triggers, synchronous with the arrival of the beams, will be distributed to beam instrumentation equipment. To suppress delay drifts of the several kilometer long optical fibres between AWAKE and the SPS RF systems, a compensated fibre link is being developed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)