Paper | Title | Page |
---|---|---|
MOPMW040 | Electron Beam Excitation of a Surface Wave in mm-Wave Open Accelerating Structures | 494 |
|
||
Funding: Work supported by the US DOE under contract DE-AC02-76SF00515. As part of research on the physics of rf breakdowns we performed experiments with high gradient traveling-wave mm-wave accelerating structures. The accelerating structures are open, composed of two identical halves separated by an adjustable gap. The electromagnetic fields are excited by an ultra-relativistic electron beam. We observed that a confined travelling-wave mode exists in half of the accelerating structure. The experiments were conducted at FACET facility at SLAC National Accelerator Laboratory. Depending on the gap width, the accelerating structure had beam-synchronous frequencies that vary from 90 to 140 GHz. When we opened the gap by more than half wavelength the synchronous wave remains trapped. Its behavior is consistent with the so called "surface wave". We characterized this beam-wave interaction by several methods: measurement of the radiated rf energy with the pyro-detector, measurement of the spectrum with an interferometer, measurement of the beam deflection by using the beam position monitors and profile monitor. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMW041 | Measurements of RF Breakdowns in Beam Driven mm-Wave Accelerating Structures | 497 |
|
||
Funding: Work supported by the US DOE under contract DE-AC02-76SF00515 We studied the physics and properties of rf breakdowns in high gradient traveling-wave accelerating structures at 100 GHz. The structures are open, made of two halves with a gap in between. The rf fields were excited in the structure by an ultra-relativistic electron beam generated by the FACET facility at the SLAC National Accelerator Laboratory. We observed rf breakdowns generated in the presence of GV/m scale electric fields. We varied the rf fields excited by the FACET bunch by moving structure relative to the beam and by changing the gap between structure halves. Reliable breakdowns detectors allowed us to measure the rf breakdown rate at these different rf parameters. We measured radiated rf energy with a pyro-detector. When the beam was off-axis, we observed beam deflection in the beam position monitors and on the screen of a magnetic spectrometer. The measurements of the deflection allowed us to verify our calculation of the accelerating gradient. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRXBB01 | Achieved Performance of an All X-band Photo-injector | 4253 |
|
||
Funding: Work funded by DOE/SU Contract DE-AC02-76-SF00515 Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-Band (11.4 GHz) RF technology. This talk presents the all X-band photo-injector facility at SLAC, covering the benefits of using this technology and highlighting the performance achieved. |
||
![]() |
Slides FRXBB01 [40.418 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-FRXBB01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |