

Performance of a First Generation X-Band Photoelectron RF gun C.Limborg-Deprey, SLAC

Outline

- Motivations for an X-Band photoinjector
- Performance of a 1st generation gun
- R&D in X-Band components
- Other X-Band projects

A Brief History Towards an X-Band Photoinjector

- X-Band accelerators developed originally for the Next Linear Collider (NLC) ~ 25 years ago
 - 100 MV/m vs 25 MV/m at S-Band
 - X-Band development post NLC High gradient R&D Linearizers and deflectors

High brightness photoinjectors developed
 for pulsed FELs for ~ 20 years
 Success of LCLS S-Band gun at 120 MV/m
 Would an X-Band gun 200 MV/m do better ?

Towards X-Band accelerators based light sources

 Construction of an all X-Band injector the X-Band Test Area (XTA) at SLAC
 Calculations show increase 10X in brightness

 Design Compact X-Band FEL
 180-m with X-Ray 2fs, 20GW, 10keV Sun.Y, *PRST-AB*, Vol 15, 030703, 2012

 Compact machine for an Inverse-Compton-Scattering(ICS) γ-Ray source for LLNL
 X-Band system provided by SLAC

History of X-Band Gun

- Originally developed for UC Davis (2001-2005) for Inverse Compton Scattering source for X-Ray A.E. Vlieks, et al. SLAC-PUB-11689, 2006
- Improved 5.5 cell version "Mark0" (2004)
 racetrack coupling cell
- Design revisited by SLAC/LLNL (2010)
 5.6 cell version "Mark1"
 Mode separation increased, elliptical irises
 R.Marsh et al. PRST-AB 15,102001, 2012
- "Mark0" installed at XTA (2012) for debugging purposes
- "Mark1" installed at LLNL (2014)

SLAG

A few RF features

- 11.424 GHz
- Filling time τ = 70 ns
- Dual feed, with racetrack
- Requires 17 MW for 200 MV/m

X-Band-Test Area (XTA) Very compact 85 MeV e-beam accelerator: 2-m long

RF Distribution

X-Band Test Area (XTA) Equipped with 6D diagnostics

Next Linear Collider Test Accelerator (NLCTA) tunnel, SLAC

X-Band Gun Outperforms an S-Band gun Due to Higher Gradient Cathode Field

• Smaller transverse emittance

Smaller spot size on cathode as high E_{acc} overcomes $E_{pull} = \frac{\sigma}{\mathcal{E}_o} = \frac{Q}{\pi r^2 \mathcal{E}_o}$ Still wins despite $\varepsilon_{thermal}$ increased with field

SLAC

Much shorter bunches

Ultra-relativisitic ($\gamma_{lorentz} \sim 2$) e-beam in less than 2 mm (versus 3mm) Fights space charge earlier

Higher peak brightness

Calculations show X10 compared to S-Band at 100 pC

High Gradient Field On Cathode Experimental Verification With Spectrometer

SLAC

Dipole corrector used as "spectrometer" e-beam position on YAG vs corrector strength

Measurement limited by dark current on YAG screen

High Gradient Field on Cathode: Verification of 200 MV/m from "TOF" Measurements

Arrival time ("time-of-flight") using phase measurement in a monopole cavity of a monopole + dipole X-Band BPM (XBPM)

Chose 12.85 GHz cavity frequency to filter dark current signal at 11.424 GHz

SLAC

C.Limborg et al. PRAB 19,053401(2016)

Dark Current Large But Not a Problem

- Dark current at high gradient fields
 Few hundreds of pC
 Fit Fowler-Nordheim equa. with β = 55
 RF pulse used typically shorter (110 ns)
- Collimated out by 6 mm linac aperture

example : 180 MV/m Q_{dark current} = 300pC but

< 20 pC accelerated to 85 MeV

• Much lower dark current on Mark-1 (LLNL)

QE Relatively Low ~ 2.10⁻⁵ Cathode Damaged (Non-Demountable)

Cathode surface Observed with visible light

2012 After RF But before laser

SLAC

2014 After commissioning

2014 Irregular emission properties at ~ 100 μ m scale

Emittances Not as Good as Predicted: Likely a Consequence of Cathode Damage

SLAC

0

x (um)

(*) after deconvolving by system resolution

Experimental Confirmation of Small Bunch Lengths Record 300 A Peak Bunch Currents

(mm)

Transverse Stability: Dominated by RF Power Jitter, Not Laser Position Jitter

Experimental data

 $8.2~\mu m$ (H) , $~6.5~\mu m$ (V) over 500 shots ie ~12.4% and 14.4 % of rms beam sizes

Simulations $(\Delta V/V)_{\rm rf, gun} \sim 10^{-3}$ $\Delta x = 20 \ \mu m$ x _{offset, laser} = 300 μ m - 0.25% -0.125 %(a) 0.8 reference 0.7 0.125 % 0.6 0.25 % 0.5% x (mm) 0.5 0.4 0.3 0.2 0.1 0 L 0 2 1 3 4 5 z (m) 0.45 8.2 _L (d) (b) (c) 0.8 0.44 8 0.43 0.75 7.8 E (MeV) (IIII) x 0.7 7.6 7.4 0. 0.65 7.20.39 0.6∟ 0.6 0.38 0.7 0.8 5 5.5 0.06 0.07 0.08 16 z (m) z (m) z (m)

Energy Stability: Dominated by Modulator Voltage Jitter

Dominated by modulator HV

175 ppm produces d $\Phi \sim 0.6$ deg rms, dV_{rf} / V_{rf} $\sim 3.10^{-4}$ rms

 Jitter always < 10⁻³ (even as low as a few 10⁻⁴ during quiet times) compared to energy spread 15 keV ~ 2.10⁻⁴

Achievements

- Good Beam Quality for 1st Generation "Debugging" Gun
 - 1pC to 1.2nC reliably up to 85 MeV
 - Bunch lengths consistent with expected values
 - Peak current of 300 A for 300 pC bunches
 - 120 fs bunch length for 5pC
 - Emittance larger on Mark-0 but good on LLNL Mark-1
 - 0.7 mm-mrad transverse emittance at 100 pC / 100 A
 - 0.2 mm-mrad at 5 pC
 - Thermal emittance 0.9 mm-mrad per rms mm on sweet spots
 - QE low at 2.10⁻⁵
- Measured , analyzed and understood stability limits
 - Energy stability < 10⁻³
 - Transverse stability < 15% beam size for sizes ~ 40 μ m
 - Timing stability w.r.t. laser < 125 fs

Mark-1 results at LLNL 0.3 mm-mrad at 80 pC **R.Marsh THPOW026**

Recommendations

To improve performance, we would

- Use demountable cathode gun
- Improve RF breakdown detection to limit damage
- Improve protection against high fluence laser pulses (both mechanical and software)
- For application requiring < 5 μm stability , work to get a 50 ppm modulator

Would like to explore

 3.5 cell gun (fewer modes, relaxed solenoid, helps laser injection)

Concept for a demountable 5.5 cell gun design

Emission of coherent THz radiation from OTR

- Energy varies in Q²
- Pulse energy ~ 4μJ

Confirmed indirectly 300A

2-Photon Photoemission with blue laser (400 nm)

- Q scales with E_{laser} ^2
- QE higher for 400 nm laser than for 266 nm for > 300 GW/cm²

Verification of Energy Gain Very High Gradient, High Impedance RF Structures

TS06 structure Only 2 pieces machined and brazed

High Z: 156 MOhms/m, Aperture 2.7 mm 16 MW -> 25MeV gain (~98MV/m) As verified with e-beam at XTA To be conditioned to 32 MeV (25MW, ~121 MV/m)

Towards a very compact injectorCompact RF Compressor/Klystrino

X4 demonstrated 100 ns ramp 300 MW and 150 MW

MOOCA01 "R&D of a Supercompact SLED System at SLAC", Juwen W. Wang, SLAC

"Klystrino"

mini-tubes in parallel power combiner 60kV PS (no oil) focusing with PM 16 -> 5MW

R&D Towards Even Higher Gradients

X-Band data Courtesy S.Tantawi, V.Dolgashev http://arxiv.org/abs/1603.01657

Compact machines Inverse Compton Scattering

LLNL (Existing) Based on SLAC X-Band technology Producing 35 keV (2015) On track for 200 keV (later 2016)

MIT ASU machine 9.3 GHz Coherent X-Ray from ICS (planned for 2017)

W.Graves et al PRST-AB 17, 120701 (2014)

Eindhoven U. VDL-ETG 12 GHz (Initiated)

X-Band FEL Collaboration

SLAC

The XbFEL Collaboration

The XbFEL Collaboration is an initiative among several International Laboratories aimed at promoting the development of X-band technology for the construction of the next generation FEL-based photon sources.

http://xbandfel.web.cern.ch/

ST	<u>Elettra - Sincrotrone Trieste, Italy.</u>
CERN	CERN Geneva, Switzerland.
JU	Jagiellonian University, Krakow, Poland.
STFC	Daresbury Laboratory Cockcroft Institute, Daresbury, UK
SINAP	Shangai Institute of Applied Physics, Shanghai, China.
VDL	VDL ETG T&D B.V., Eindhoven, Netherlands.
OSLO	University of Oslo, Norway.
IASA	National Technical University of Athens, Greece.
UU	Uppsala University, Uppsala, Sweden.
ASLS	Australian Synchrotron, Clayton, Australia.
UA-IAT	Institute of Accelerator Technologies, Ankara, Turkey.
ULANC I	ancaster University, Lancaster, UK.

June 21st face-to-face meeting at CERN https://indico.cern.ch/event/521539

- new funding opportunities (Horizon2020, Work Programme 2016-2017);
- extend collaboration to new partners.

See also "Design Optimization of an X-band based FEL", this Conference MOPOW036

CONCLUSIONS

- Mark-0 gun at XTA delivers pC to 1.2 nC reliably with brightness equivalent to that of S-Band gun even with cathode damage
- Expected increase in brightness X10 Achieved on Mark-1 at LLNL
- Recommend to design demountable cathode gun for R&D
- On the path to make systems very compact including power source
- Several ICS/FELs projects based on X-Band technology

Team, collaborators, acknowledgements

K.Jobe, E.Hemsing, M.Dunning, S.Weathersby A.Vrielink C.Limborg H.Li,

SLAC

T.Vecchione, C.Adolphsen, F.Wang, D.McCormick, T.Raubenheimer

S.Tantawi, M.Nasr C.Burkhart

LLNL collaborators , Roark Marsh , Chris Barty

SLAC support ADC Controls Facilities

Work supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515

