Author: Luo, H.W.
Paper Title Page
TUXB01 High Power Radiation Sources using the Steady-state Microbunching Mechanism 1048
  • A. Chao, E. Granados, X. Huang, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • H.W. Luo
    NTHU, Hsinchu, Taiwan
  The mechanism of steady-state microbunching (SSMB) was proposed for providing high power coherent radiation using electron storage rings. The mechanism follows closely the RF bunching in conventional storage rings, except that the energy modulation of by an RF system at a microwave wavelength is replaced by a seeded laser in an undulator at an optical wavelength. No FEL mechanism, and thus no FEL energy heating, is invoked. The basic idea is firstly to make the beam microbunched so that its radiation becomes coherent, and secondly to make the microbunching a steady state so that the coherent radiation is maintained at every turn. The combination of the high repetition rate of a storage ring and the enhanced radiation power by a factor of N (the number of electrons in the microbunches within one coherence length) opens the possibility as well as challenges of very high power SSMB sources. To explore its potential reach, we apply SSMB to the infrared, deep ultraviolet and EUV regions and estimate their respective power levels using SPEAR3 as example. Several variants of the SSMB schemes are discussed. A proof-of-principle configuration without an identified testbed is also suggested.  
slides icon Slides TUXB01 [1.602 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUXB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPOW042 Properties of Synchrotron Radiation from Segmented Undulators based on a Wigner Distribution Function 2933
SUPSS009   use link to see paper's listing under its alternate paper code  
  • H.W. Luo, C.H. Lee
    NTHU, Hsinchu, Taiwan
  • T.Y. Chung, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  Three long straight sections with a double mini-βy lattice were designed in Taiwan Photon Source. For the purpose to understand whether the brilliance can be enhanced or not when two collinear undulators were installed in the double mini-βy. Therefore, the Wigner distribution function (WDF) is developed to calculate the brilliance in the double mini-βy lattice that is a natural way to describe a synchrotron radiation source. Herein, the brilliance is thereby calculable without a Gaussian approximation used in a conventional manner. Some important optical properties such as the degree of coherence can be directly calculated with this method. We use it as an example to investigate the properties of radiation from a segmented undulator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)