Author: Liu, Y.P.
Paper Title Page
TUPMB046 The Preliminary Conceptual Design of a 2k Cryogneic System for Circular Electron Positron Collider (CEPC) 1199
 
  • Y.P. Liu, L. Bian, R. Ge, R. Han, S.P. Li, M.J. Sang, L.R. Sun, M.F. Xu, R. Ye, J.Q. Zhang, J.H. Zhang, X.Z. Zhang, Z.Z. Zhang
    IHEP, Beijing, People's Republic of China
 
  The Circular Electron Positron Collider (CEPC) is a long-term collider project, which will serve as a Higgs Factory and offer a unique opportunity for direct searches for New Physics in the high-energy range far beyond LHC reach [1]. In the frame of this project, a large 2K cryogenic system will be built to provide coolant for superconducting cavities used in booster ring and collider ring. All the superconducting cavities will be working under 2K. This paper will give a brief introduction to the preliminary considerations of this large cryogenic system, including the general layout, heat load estimation, helium refrigerator, schematic flow diagram as well as the main parameters and working process  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW004 Conceptual Design for the HEPS Power Supply System 3540
 
  • F. Long, Y.P. Liu, X. Qi, Z.H. ZhenHua
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) requires more than 1600 power supplies with various kinds of power rating. The power supply system includes power supplies for the Booster, Transport, and Storage Ring. The power supply for the Booster is based on 2Hz sinusoidal dynamic current output with 1000ppm current tracking requirement. And the power supply performance requirements of 10ppm long-term current stability are much more rigorous than commercial power supplies. The paper shows the conceptual design of the power supply system for the HEPS and possible solutions to critical technical challenges.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)