Author: Liu, Y.-H.
Paper Title Page
THPMY033 Vibration Evaluation for Deionized Water Pumps in TPS 3731
 
  • Y.-H. Liu, C.S. Chen, Y.-C. Chung
    NSRRC, Hsinchu, Taiwan
 
  The purpose of this paper is to evaluate the vibration level and spectrum for TPS deionized water pumps. The utility systems started to operate from the beginning of 2014, some of deionized water pumps produced higher vibration level and noise during operation. The possibly reason could be not appropriated installation and commission test. In order to figure out the status of these deionized water pumps, the vibration analysis become needed. After vibration test, the booster(BO) and copper(CU) deionized water pump systems generate higher vibration level. According to the vibration test results, the pump is repair and maintain. Although there is some problems for TPS deionized water pumps, the vibration test is still one important way to maintain utility systems. The utility systems could prevent malfunction through regular vibration inspection.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY034 Power Saving Status at NSRRC 3734
 
  • J.-C. Chang, W.S. Chan, Y.C. Chang, C.S. Chen, Y.F. Chiu, Y.-C. Chung, K.C. Kuo, M.T. Lee, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng, J.P. Wang
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC), Taiwan currently operates two synchrotrons, the Taiwan Light Source (TLS) and Taiwan Photon Source (TPS). The former one has been operated for more than 22 years, while the latter is in commissioning phase. We target of the beam current on 500 mA. Thus, the power consumption increases higher than ever. Currently, the contract power capacities of the TLS and TPS with the Taiwan Power Company (TPC) are 5.5MW and 7.5MW, respectively. The ultimate power consumption of the TPS is estimated about 12.5MW. To cope with increasing power requirement, we have conducting several power saving schemes for years. This paper presents our latest power schemes, which include installation of power saving fan for the cooling tower, adjustment of supply air temperature according to the atmosphere enthalpy, replacement of old air conditioning unit (AHU), power consumption control by the operation of chillers, and power factor improvement.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)