Author: Liu, C.Y.
Paper Title Page
THPMY031 The Methods to Optimize Power Usage for Chiller System of TPS Utility 3725
  • C.S. Chen, W.S. Chan, J.-C. Chang, Y.C. Chang, Y.-C. Chung, C.Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
  The recently completed Taiwan Photon Source (TPS) is one of the brightest synchrotron X-ray sources in the world. It will offer 500 mA beam current at 3 GeV for all kinds of different subject experiments and novel scientific ideas. This facility will be the most inspiring trigger to Taiwan's scientific research in the twenty-first century. In order to make sure this giant machine operate properly, the utility system plays a very important role. Not only for the giant machine, the utility system also takes responsibility for providing a cozy environment for all staff. Furthermore, the requirements of air condition in some critical areas are very strict even to ± 0.1°C temperature accuracy. All of it cost a large amount of energy to satisfy everyone's demand. According to the annual budget report of NSRRC, the total charge of electricity and water was more than 80 million N.T. dollars per year before TPS project, and increased by nearly twice after TPS inauguration. Since the government budget is limited, the whole utility system must be operated under more economic ways to use energy more efficiently.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPMY032 Air Conditioning System Control Study and Improvement for Transient Events in the TLS Storage Ring 3728
  • J.-C. Chang, C.S. Chen, C.Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
  It has been studied and verified that thermal effect is one of the most critical mechanical factors affecting the beam stability. There are many accelerators have controlled the global air temperature variation in the storage ring tunnel within ±0.1C during stable beam operation in the world. However, some transient events, such as unexpected beam loss or beam trip will clearly affect air temperature variation. Moreover, machine shutdown will change the air conditioning status radically. It will also take time to reach a stable air temperature after machine shutdown. This paper presents effects on the air temperature by those transient events and improvement schemes.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPMY034 Power Saving Status at NSRRC 3734
  • J.-C. Chang, W.S. Chan, Y.C. Chang, C.S. Chen, Y.F. Chiu, Y.-C. Chung, K.C. Kuo, M.T. Lee, Y.-C. Lin, C.Y. Liu, Y.-H. Liu, Z.-D. Tsai, T.-S. Ueng, J.P. Wang
    NSRRC, Hsinchu, Taiwan
  National Synchrotron Radiation Research Center (NSRRC), Taiwan currently operates two synchrotrons, the Taiwan Light Source (TLS) and Taiwan Photon Source (TPS). The former one has been operated for more than 22 years, while the latter is in commissioning phase. We target of the beam current on 500 mA. Thus, the power consumption increases higher than ever. Currently, the contract power capacities of the TLS and TPS with the Taiwan Power Company (TPC) are 5.5MW and 7.5MW, respectively. The ultimate power consumption of the TPS is estimated about 12.5MW. To cope with increasing power requirement, we have conducting several power saving schemes for years. This paper presents our latest power schemes, which include installation of power saving fan for the cooling tower, adjustment of supply air temperature according to the atmosphere enthalpy, replacement of old air conditioning unit (AHU), power consumption control by the operation of chillers, and power factor improvement.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)