Author: Litvinov, S.A.
Paper Title Page
TUPMB017 The Injection Septum Magnet for the Collector Ring (FAIR) 1145
 
  • P.Yu. Shatunov, D.E. Berkaev, I. Koop, E.P. Semenov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • A. Dolinskyy, S.A. Litvinov
    GSI, Darmstadt, Germany
  • Yu. A. Rogovsky
    Budker INP & NSU, Novosibirsk, Russia
 
  Collector Ring is one of the key installations of the FAIR project (Darmstadt, Germany). It is dedicated for stochastic cooling of incoming beams of antiprotons and rare ions. Additionally there is a mode of operation for experiments in the ring. Beams for all modes of operation are injected through one transfer channel. Extremely high acceptance of the ring (240 mm*mrad) leads to large apertures of all magnetic elements including the septum magnet. Meanwhile planned parameters of the magnetic field and magnetic field quality are comparatively strict. The present state of the design of the pulsed injection septum for the CR is presented in this article together with the concept of the injection system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB003 Orbit Response Matrix Analysis for FAIR Storage Rings 3219
 
  • O.A. Kovalenko, A. Dolinskyy, O.E. Gorda, S.A. Litvinov
    GSI, Darmstadt, Germany
 
  The Orbit Response Matrix (ORM) analysis is a method which allows to find the sources of discrepancies between design and real optics of an accelerator machine. In particular, with this technique one retrieves information about gradient errors, dipole corrector gain errors etc. Orbit response matrix is computed by measuring orbit deviations caused by single kicks of corrector magnets. With fitting the matrix one obtains the ion optics which best describes the real accelerator. The ORM analysis, presented in the paper, is employed to find error sources in the FAIR storage rings CR and HESR during and after the beam commissioning. The algorithm itself was implemented in Python programming language with a help of linear algebra libraries. The ORM analysis accuracy as well as its limitations are addressed in the paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR018 Ion-Optics of Antiproton Separator at FAIR 3431
 
  • S.A. Litvinov, A. Dolinskyy, K. Knie
    GSI, Darmstadt, Germany
  • I. Koop, P.Yu. Shatunov, I.M. Zemlyansky
    BINP SB RAS, Novosibirsk, Russia
 
  In the framework of antiproton program at FAIR project, the large acceptance antiproton separator is dedicated for the effective separation of the secondary antiprotons from the primary protons and the secondary beams of other particle species and subsequent transportation to the Collector Ring (CR). Here we present the latest ion-optical layout of the antiproton separator and possible second-order correction scheme as well.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)