Author: Litvinenko, V.
Paper Title Page
TUPMR008 Simulation of Ion Beam under Coherent Electron Cooling 1243
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The proof of coherent electron cooling (CeC) principle experiment is currently under commissioning and it is essential to have the tools to predict the influences of cooling electrons on a circulating ion bunch. Recently, we have developed a simulation code to track the evolution of an ion bunch under the influences of both CeC and Intra-beam scattering (IBS). In this paper, we will first show the results of benchmarking the code with numerical solutions of Fokker-Planck equation and then present the simulation results for the proof of CeC principle experiment.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR009 Analytical Studies of Ion Beam Evolution under Coherent Electron Cooling 1247
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the presence of coherent electron cooling (CeC), the evolution of the longitudinal profile of a circulating ion bunch can be described by the 1-D Fokker-Planck equation. We show that, in the absence of diffusion, the 1-D equation can be solved analytically for certain dependence of cooling force on the synchrotron amplitude. For more general cases, we solved the 1-D Fokker-Planck equation numerically and the numerical solutions have been used to benchmark our simulation code as well as providing fast estimations of the cooling effects.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB02 Record Performance of SRF Gun with CsK2Sb Photocathode 2085
 
  • I. Pinayev, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, M. Harvey, T. Hayes, R.L. Hulsart, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, D. Phillips, T. Rao, J. Reich, T. Roser, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, Z. Sorrell, R. Than, C. Theisen, J.E. Tuozzolo, E. Wang, G. Wang, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
High-gradient CW photo-injectors operating at high ac-celerating gradients promise to revolutionize many sci-ences and applications. They can establish the basis for super-bright monochromatic X-ray and gamma-ray sources, high luminosity hadron colliders, nuclear- waste transmutation or a new generation of microchip produc-tion. In this paper we report on our operation of a super-conducting RF electron gun with a record-high accelerat-ing gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 2 nC). We briefly describe the system and then detail our experimental results.
 
slides icon Slides WEOAB02 [28.500 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW027 The ERL-based Design of Electron-Hadron Collider eRHIC 2482
 
  • V. Ptitsyn, E.C. Aschenauer, I. Ben-Zvi, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, J.C. Brutus, O.V. Chubar, A.V. Fedotov, D.M. Gassner, H. Hahn, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, Y.C. Jing, R.F. Lambiase, V. Litvinenko, C. Liu, Y. Luo, G.J. Mahler, B. Martin, G.T. McIntyre, W. Meng, F. Méot, T.A. Miller, M.G. Minty, B. Parker, I. Pinayev, V.H. Ranjbar, T. Roser, J. Skaritka, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, H. Witte, Q. Wu, C. Xu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recent developments of the ERL-based design of future high luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (L ~ 1033 cm-2 s-1) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design (L > 1034 cm-2 s-1) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY023 Beam Dynamics Studies for Coherent Electron Cooling Experiment 3032
 
  • Y.H. Wu, D. Kayran, V. Litvinenko, I. Pinayev
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron Cooling (CeC)* is a proposed advanced beam cooling method that has the potential to reduce the ion beam emittance in significantly shorter time compared to existing cooling methods. The newly constructed linear electron accelerator for the CeC experiment can generate electron beams with the required beam parameters for effective cooling. In this paper, we show simulation studies for the CEC linac by using the PARMELA** and ELEGANT*** beam dynamics tracking codes.
* V.N.Litvinenko and Y.S.Derbenev, PRL 102, 114801 (2009)
** Lloyd M.Young, Parmela manual, Los Alamos National Laboratory
*** M. Borland, Elegant, Argonne National Laboratory (2000)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY057 The 2015 eRHIC Ring-Ring Design 3126
 
  • C. Montag, E.C. Aschenauer, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, V. Litvinenko, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Tepikian, D. Trbojevic, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To reduce the technical risk of the future electron-ion collider eRHIC currently under study at BNL, the ring-ring scheme has been revisited over the summer of 2015. The goal of this study was a design that covers the full center-of-mass energy range from 32 to 141 GeV with an initial luminosity around 1033 cm-2 sec-1, upgradeable to 1034 cm-2 sec-1 later on. In this presentation the baseline design will be presented, and future upgrades will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)