Author: Lidia, S.M.
Paper Title Page
MOPOY050 Beam Commissioning Plan of the FRIB Superconducting Linac 961
  • Y. Zhang, C.P. Chu, Z.Q. He, M. Ikegami, S.M. Lidia, S.M. Lund, F. Marti, G. Shen, Y. Yamazaki, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The FRIB superconducting linac will deliver all heavy ion beams with energy above 200 MeV/u, and beam power on target up to 400 kW for generation of short lived isotopes. Beam commissioning is the first step to prepare and tune the superconducting linac for high power operation. A staged beam commissioning plan of the FRIB linac is developed, and complete beam tuning practices segment by segment through the entire linac are introduced, which include phase scan signature matching of the superconducting cavities, longitudinal beam matching, transverse matching with horizontal-vertical beam coupling, and beam optics corrections of achromatic and isochronous folding segments up to the second order for acceleration and transport of multi charge state beams.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPMR024 Commissioning and First Accelerated Beams in the Reaccelerator (Rea3) of the National Superconducting Cyclotron Laboratory, MSU 1287
  • A.C.C. Villari, G. Bollen, M. Ikegami, S.M. Lidia, R. Shane, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.M. Alt, D.B. Crisp, S.W. Krause, A. Lapierre, D.J. Morrissey, S. Nash, R. Rencsok, R.J. Ringle, S. Schwarz, C. Sumithrarachchi, S.J. Williams
    NSCL, East Lansing, Michigan, USA
  The ReAccelerator ReA3 is a worldwide unique, state-of-the-art reaccelerator for rare isotope beams. Beams of rare isotopes are produced and separated in-flight at the NSCL Coupled Cyclotron Facility and subsequently stopped in a gas cell. The rare isotopes are then continuously extracted as 1+ (or 2+) ions and transported into a beam cooler and buncher, followed by a charge breeder based on an Electron Beam Ion Trap (EBIT). In the charge breeder, the ions are ionized to a charge state suitable for acceleration in the superconducting radiofrequency (SRF) linac, extracted in a pulsed mode and mass analyzed. The extracted beam is bunched to 80.5 MHz and then accelerated to energies ranging from 300 keV/u up to 6 MeV/u, depending on their charge-to-mass ratio. Alternatively, stable isotope ions can be accelerated injecting stable gas in the EBIT. ReA3 was commissioned recently with stable 40Ar and 39K as well as with the rare isotope beams of 46Ar and 46K. This contribution will focus on the properties and techniques used to accelerate and transport rare isotope beams and will show results obtained during the preparation of the two first experiments using the ReA facility.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEYA01 Beam Physics and Technical Challenges of the FRIB Driver Linac 2039
  • Y. Yamazaki, H. Ao, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, A. Facco, F. Feyzi, P.E. Gibson, T. Glasmacher, Z.Q. He, L.T. Hoff, K. Holland, M. Ikegami, S.M. Lidia, Z. Liu, G. Machicoane, F. Marti, S.J. Miller, D. Morris, J. Popielarski, L. Popielarski, G. Pozdeyev, T. Russo, K. Saito, S. Shanab, G. Shen, S. Stark, H. Tatsumoto, R.C. Webber, J. Wei, T. Xu, Y. Zhang, Q. Zhao, Z. Zheng
    FRIB, East Lansing, Michigan, USA
  • K. Dixon, V. Ganni
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama, M. Masuzawa, K. Tsuchiya
    KEK, Ibaraki, Japan
  • M.P. Kelly, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB driver linac accelerates all the stable ion beams including uranium over 200 MeV/u with a CW beam power of 400 kW in order to produce isotopes as rare as possible. Except for 0.5 MeV/u RFQ, the linac is making use of superconducting (SC) RF technology. The beam power, which is an order of 2.5 as high as those of existing SC heavy ion linac, gives rise to many technical challenges as well as beam physics related ones. In particular, the uranium beam loss power density is approximately 30 times as high as the proton one with the same beam energy per nucleon and the same beam power. For this reason, the machine protection system needs a special care. Another example of the technical challenges is to install beam focusing solenoid as close as possible to SC cavities in order to ensure the frequent beam focusing both longitudinally and transversely. The talk reviews all these challenges with development results of their mitigation as well as construction status.
slides icon Slides WEYA01 [16.820 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEYA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)