Author: Levichev, E.B.
Paper Title Page
WEPOY016 Use of Nonuniform Magnets for Emittance Reduction 3014
 
  • E.B. Levichev, G.N. Baranov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
 
  We study a theoretical minimum emittance (TME) for a non-uniform bending magnet including a three-step bend (sandwich magnet), a dipole with linear ramp of the bend-ing radius and the same but with a central segment of constant field. We derive expression for the minimum emittance and expand it into a power series with respect to the bending angle. A zero-order term naturally gives the uniform magnet TME while higher-order terms are responsible for the emittance reduction. Theoretical re-sults are verified by numerical simulation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR032 Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials 3455
 
  • I.A. Morozov, E.B. Levichev
    BINP SB RAS, Novosibirsk, Russia
 
  We apply two analytical methods to control accelerator dynamic aperture (DA) with multipole potentials. Both methods assume that accelerator model can be represented as a product of unperturbed and perturbed exponential operators with exponent of perturbed operator given as formal power series in perturbation parameter and known dependence of series coefficients on lattice parameters such as multipole strength distribution. Normal form method can be applied to the above representation and then lattice parameters are used to control normal form Hamiltonian coefficients. Hamiltonian control can be used to compute control term and lattice parameters are then fitted to approximate corresponding controlled operator. Theoretical results as well as model examples are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR019 Momentum Acceptance Optimization in FCC-ee Lattice (CERN) 3814
 
  • A.V. Bogomyagkov, E.B. Levichev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work is supported by the Ministry of Education and Science of the Russian Federation.
The part of the ongoing study of the future circular collider (FCC) is an electron positron machine with center of mass energy from 90 to 350 GeV. Crab waist collision scheme and small (1 mm) vertical beta function at the interaction point (IP) provide superior luminosity. At the top energy, radiation in the field of the opposite bunch (beamstrahlung) limits the beam lifetime and therefore achievable luminosity. Beamstrahlung influence depends on momentum acceptance of the lattice, the value of 2% provides acceptable lifetime. The small value of vertical beta function enhances effects of nonlinear chromaticity. The present work describes principles used in design and optimization of FCC-ee momentum acceptance optimization and are based on chromatic variations of beta function.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR020 Status of VEPP-4M Collider 3818
 
  • E.B. Levichev, O.I. Meshkov, P.A. Piminov, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  At present the VEPP-4 storage ring facility provides varied experimental programs including HEP, nuclear physics, synchrotron radiation, polarized electron/positron beam research, etc. Until now, the studies were mainly performed at the beam energy below 2 GeV but a strong interest of experimentalists encourages us to increase the beam energy up to 5 GeV. Reliable and high-performance operation at high energy is a challenge for the machine. Here we discuss the recent experimental results at the low energy, and prospects and constraints of the energy ramp.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR022 Design of Beam Optics for the FCC-ee Collider Ring 3821
 
  • K. Oide, K. Ohmi, D. Zhou
    KEK, Ibaraki, Japan
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • S. Aumon, M. Benedikt, H. Burkhardt, A. Doblhammer, B. Härer, B.J. Holzer, J.M. Jowett, M. Koratzinos, L.E. Medina Medrano, Y. Papaphilippou, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • A.V. Bogomyagkov, I. Koop, E.B. Levichev, P.A. Piminov, D.N. Shatilov, D.B. Shwartz, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • Y. Cai, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California, USA
 
  A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)