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Abstract

We apply two analytical methods to control accelerator dy-

namic aperture (DA) with multipole potentials. Both meth-

ods assume that accelerator model can be represented as a

product of unperturbed and perturbed exponential operators

with exponent of perturbed operator given as formal power

series in perturbation parameter and known dependence of

series coefficients on lattice parameters such as multipole

strength distribution. Normal form method can be applied to

the above representation and then lattice parameters are used

to control normal form Hamiltonian coefficients. Hamilto-

nian control can be used to compute control term and lattice

parameters are then fitted to approximate corresponding

controlled operator. Theoretical results as well as model

examples are presented.

INTRODUCTION

In this paper we try to enlarge DA limited by sextupoles

by constructing symbolic objective functions with analytical

tools such as normal forms [1,2] and Hamiltonian control

theory [3,4]. Analytical computations are generally complex

but results depend explicitly on system parameters. Thus

analytical results can be used as a complement to numerical

DA optimization [5] by providing good initial values for

system parameters and additional objective functions.

ACCELERATOR MODEL

Single particle dynamics can be described in terms of

compositional operators [1,6]. Evolution of phase space in

such system with operatorM is given by:

zβ =MI(zα)

whereI is an identity function, zα and zβ are initial and final

phase space points, respectively. In the case of accelerators it

is convenient to express compositional operator as a product

of functionally independent parts, e.g. each part describes

propagation through a certain accelerator element:

M =M1M2 . . .Mn

where Mα = exp([Fα]) is an element operator and Lie

operator is defined as [F]G := ∂qF∂pG−∂pF∂qG. Further-

more, locally autonomous dynamics is assumed and thus

generators are of the form:

Fα = −sαHα = Aα + Bα (ε)

where sα being element length, Hα being element Hamilto-

nian and generator can be further splitted into unperturbed

part Aα and nonlinear perturbation Bα (ε).
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Our goal is to factorizeM into a product of unperturbed

and perturbed operators. To do so, we first need to decom-

pose individual operators:

Mα = exp([Aα + Bα (ε)]) = exp([Aα]) exp([Cα (ε)])

and find coefficients of Cα (ε) = C
(1)
α ε + C

(2)
α ε

2
+ . . . up

to some predefined order εn. For multupole perturbation

we associate εn with a homogeneous polynomial Pn+2 of

degree n+2. Decomposition can be motivated by symplectic

integrators [7]. In this case element is first splitted into

slices and then factorized with BCH formula [8] and operator

identities. Another possibility is to use BCH directly:

exp([Cα (ε)]) := exp([−Aα]) exp([Aα] + [Bα (ε)])

This can be done for each slice or exact expression can be

obtained for pure multipole magnets, i.e. when Aα = Aα (p).

Decomposed full operator is of the form:

M =M[0, 1]M[1]M[1, 2] . . .M[k−1, k]M[k]M[k, k+1]

whereM[α] := exp([Cα (ε)]) and doubly indexed operators

M[α, β] describe unperturbed motion between perturba-

tions. Using operator identities one gets:

M =M[0, k + 1]M̂[1] . . . M̂[k]

where M̂[α] = exp([M−1[α, k +1]Cα (ε)]) and the product

M̂[1] . . . M̂[k] can be then computed leading to the desired

factorized form:

M =M[0, k + 1] exp([X (ε)]) (1)

where X (ε) = X (1)ε + X (2)ε2
+ . . . describes the action of

nonlinear perturbation and dependence of it’s coefficients

on parameters is assumed to be known symbolically.

Another representation can be obtained with Floquet trans-

formationM[α, k + 1] = A−1[α]R[α, k + 1]A[k + 1] and

the operator in this case is:

M = A−1[0]R[0, k + 1] exp([Y (ε)])A[k + 1] (2)

Factorized operators given by eq. (1) and (2) can be then

used for normal form and Hamiltonian control computations

with generic coefficients for observables X (ε) and Y (ε).

In this paper we use simple FODO cell with fixed sex-

tupoles as a test problem for DA control. Lattice functions

and as well as comparison with analytical computations up

to order four are shown in Fig. 1. We also note that nonlinear

pseudo–Hamiltonian function X (ε) computed analytically

matches the one obtained with COSY–INFINITY [9].

Proceedings of IPAC2016, Busan, Korea THPMR032

05 Beam Dynamics and Electromagnetic Fields

D02 Non-linear Single Particle Dynamics - Resonances, Tracking, Higher Order, Dynamic Aperture, Code

ISBN 978-3-95450-147-2

3455 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



βx βy

QUAD SEXT MULT

0 2 4 6 8 10 12

0

5

10

15

20

25

s[m]

β
x
[m

],
β
y
[m

]

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

q1

ν
1

-0.04 -0.02 0.00 0.02 0.04

0.25

0.30

0.35

0.40

q2

ν
2

a. b. c.

Figure 1: (a.) lattice functions and profile for one cell, full lattice consists of twelve identical cells with νx = 2.68 and

νy = 2.41, (b., c.) horizontal and vertical frequencies as function of corresponding coordinates for element-by-element

tracking (black dots), perturbation computed up to order four (red dots) and normal form result (black line).

NORMAL FORM COMPUTATION

The goal of the normal form computation is to find opera-

tor N conjugate toM that is simpler in some sense:

N = R exp([K]) = exp([T])M exp([−T]) (3)

whereM is given by eq. (2), R = exp([−2πνJ]) is an unper-

turbed part, exp([K]) is nonlinear part of the normal form

and exp([T]) is a normal form transformation. Homological

equations for K and T can be deduced from:

e[K]
= R−1e[T ]Re[Y]e[−T ]

= e[X]e[Y]e[Z]

by using BCH formula and expanding all functions into

formal power series F = F (1)ε+F (2)ε2
+ . . . in ε parameter.

Thus homological equations of order k are of the form:

K (k)
= X (k)

+ Y (k)
+ Z (k)

+W (k)

where W (k) depends on previous orders. To solve these

equations all observables are transformed to resonance basis

F (k)
=

∑

F (k)[n,m]Q[n,m] with basis resonance functions

defined as Q[n,m] := Jn/2eimϕ . Finally, solution for trans-

formation coefficients is:

T (k)[n,m] = 1/2 (1 − i cot(πmν))
(

W (k)[n,m] − K (k)[n,m]
)

For the case when mν , p ∈ Z is assumed only terms with

m = 0 contribute to normal form. Then K depends only on

actions and thus commutes with R. Such full normal form

Hamiltonian allows one to obtain the dependence of frequen-

cies on amplitude (Fig. 1). Another possibility is to keep

strong resonances in normal form even though resonance

condition is fulfilled only approximately.

For DA control we can start with full normalization and

then fit parameters to reduce frequency dependence on the

amplitude and thus reduce tune footprint size. But this pro-

cedure can lead to growth of resonance strengths and such

resonances (that can be selected based on FMA) should be

included into normal form and reduced as well.

HAMILTONIAN CONTROL THEORY

The goal of Hamiltonian control theory is to find a control

operator exp([K]) such that K (ε) = K (2)ε2
+ ... and the

controlled operator:

MK =M exp([K]) = R exp([Y ]) exp([K])

is conjugate to a system that is close to unperturbed one:

exp([T])MK exp([−T]) = R exp([GRY ])

This is the case when control operator is defined as:

e[K] := e[−Y]e[(GN−G)Y]e[GRY]e[GY]

where R is an unperturbed part of uncontrolled operatorM

given by eq. (2), G := G(1 − R−1)G is a pseudo-inverse

operator of 1− R−1, GN := (1− R−1)G is the non-resonant

operator, GR := 1−GN is the resonant operator and T := GY

is the transformation. Controlled operator is then given by:

MK = Re[−R−1GY]e[GRY]e[GY]
= Re[YK ] (4)

Perturbation Y is transformed into resonance basis and the

action of the above operators on the basis function is:

GQ[n,m] = 1/2(1 − i cot(πmν))∆(mν < Z)Q[n,m]

R−1GQ[n,m] = −1/2(1 + i cot(πmν))∆(mν < Z)Q[n,m]

GNQ[n,m] = ∆(mν < Z)Q[n,m]

GRQ[n,m] = ∆(mν ∈ Z)Q[n,m]

where function ∆ is defined as ∆(⊤) := 1 and ∆(⊥) := 0.

In general the closed form of controlled operator can’t be

obtained, but it can be approximated up to some order in

perturbation parameterYK (ε) = Y
(1)

K
ε+Y

(2)

K
ε2
+. . . by using

BCH formula. Then system parameters should be fitted

for control to be realized up to some order. Hamiltonian

control doesn’t change first order properties of a system,

thus to construct controlled operator one can chose only first

order perturbation Y (ε) = Y (1)ε and, since Y (1) is associated

with homogeneous polynomial of degree three, GRY = 0.

Furthermore, normal form of controlled operator has K = 0

and T = T (1)ε. The effect of formal control on DA is shown

in Fig. 2.
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Figure 2: Dynamic aperture of original system (a1., a2.), first order nonlinear perturbation (b1.), second order formal

controlled system (c1.), third order formal controlled system (d1.), fourth order formal controlled system (e1.), L2 realization

of second order controlled system (b2.), L1 realization of second order controlled system (c2.), L2 realization of zero K2

normal form (d2.), L1 realization of zero K2 normal form (e2.).

PARAMETERS FITTING

Realization of normal form and Hamiltonian control ob-

jectives can be reduced to minimization problem, since in

both cases one needs to fit system parameters (strength of

multipoles and their positions) so that coefficients of some

polynomial observable have specific values.

If positions of multipoles are allowed to vary, the mini-

mization problem is intrinsically nonlinear. But for fixed

multipole positions the problem can be partially reduced

to linear minimization. This is possible since leading or-

der dependence of k’th coefficients on k’th order multipole

amplitudes is linear. And thus one needs to solve linear

problem for each order. Moreover, the problem can be linear

for several order at once, e.g. second and third orders are

linear with respect to octupole strength for fixed sextupoles.

It should be noted that since fitting is performed up to

some order, the effect of higher orders is assumed to be

negligible which might not be a good assumption.

RESULTS AND CONCLUSION

We’ve tried to realise second order controlled system and

second order full normal form with zero coefficients by plac-

ing octupoles in drift spaces for simple FODO accelerator

lattice. The results of DA computation for octupole ampli-

tudes obtained by means of L2 and L1 [10] minimization

are shown in Fig. 2. As it can be seen, DA is reduced for

most cases except zero K2 with L2 minimization for which

DA is slightly increased. DA is reduced due to large fitted

octupole amplitudes that leads to modification of higher or-

der coefficients which results not negligible contribution of

higher order terms.
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