Author: Leng, Y.B.
Paper Title Page
MOPMB048 Bunch Length Measurement at Bunch by Bunch in Harmonics Method at Shanghai SSRF Storage Ring 199
SUPSS066   use link to see paper's listing under its alternate paper code  
 
  • L.W. Duan, Y.B. Leng, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
  • N. Zhang
    SSRF, Shanghai, People's Republic of China
 
  Harmonics method in frequency domain is an effective and inexpensive bunch length measurement method. With advances in technology, it is possible to do bunch length measurement at bunch by bunch using electronic method. We design and make an electronic system to realize metering at bunch by bunch, and believe it has reasonable bunch length resolution. All selected harmonic signals will be mixed down to 500 MHz and digitized at bunch-by-bunch rate by a multi-channel DBPM processor. The primary beam experiment results will be presented and discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB049 Beam Experiment of Low Q CBPM Prototype for SXFEL 202
 
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
 
  To meet the high resolution beam position measurement requirement of micron or sub-micron for shanghai soft X-ray free electron laser (SXFEL) under construction, the cavity beam position monitor (CBPM) operating at C-band and the corresponding electronic has been designed by SINAP. In this paper, the design and optimize of the newly low Q cavity BPM is mentioned, the beam test was conducted on the Shanghai Deep ultraviolet free electron laser (SDUV-FEL) facility. CBPM signal processors including broadband oscilloscope and home-made digital BPM processor have been used to evaluate the system performance as well. The beam experimental result, which matched with MAFIA simulation very well, will be presented and discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB052 On-axis Injection using a Sin Wave RF Kicker 211
 
  • B.C. Jiang, Y.B. Leng, S.Q. Tian, L.Y. Yu, M.Z. Zhang, Q.L. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  On-axis injection is one of the critical issues for an ul-tra-low emittance storage ring which holds a rather small dynamic aperture. In order to reduce the challenges of the fast pulsed kicker design, a sin wave RF kicker is studied which is suitable for longitudinal on-axis injection. Since the injected bunch is longitudinally apart from the stored bunches, the location of the stored bunches can be at the π knot of the sin wave, while the injected bunches are launched at a phase around π/2+n·π. At this situation the injected bunches will receive a transverse kick, however the store bunches are almost un-affected.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY007 Application of Embedded Linux Boards in SSRF and SXFEL Control System 4098
 
  • Y.B. Yan, G.H. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, W.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: CAS Key Technology Talent Program and Youth Innovation Promotion Association
The embedded Linux boards, such as Raspberry Pi B+ and Beaglebone Black, are credit-card-sized single-board computer. They are low-cost and equipped with a huge array of GPIO (general purpose input output), which can be used to take readings from sensors and control external devices. The active development community and open-source nature also make them ideal choices for many applications. They can be integrated with the accelerator control system and make more devices 'intelligent' via an economical way. It will be helpful to improve the efficiency of the accelerator. The details of the applications in SSRF and SXFEL control system will be reported in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB050 Design of Ultra-wideband Amplifier in RF Front End for Bunch-by-bunch Measurement 205
 
  • Y. Yang, Y.B. Leng, Y.B. Yan
    SSRF, Shanghai, People's Republic of China
 
  RF front end is one of the key technologies in beam diagnosis, especially in bunch-by-bunch measurement at storage ring. This paper gives the design of ultra-wideband amplifier in RF front end for bunch-by-bunch measurement at SSRF. Simulation have been done to verify the performance of this design.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB051 Cavity BPM Performance Online Evaluation using PCA Method 208
 
  • Y.B. Leng, L.W. Lai, L.Y. Yu, R.X. Yuan
    SSRF, Shanghai, People's Republic of China
  • J. Chen, Z.C. Chen
    SINAP, Shanghai, People's Republic of China
 
  Funding: NSFS 11575282
This article proposes a new test method to evaluate the performance of cavity beam position monitors using the actual beam as the exciting signal. The new method sepa-rates the signals of different modes and improves the measurement accuracy by eliminating unwanted cou-plings from other sources.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)