Author: Lai, L.W.
Paper Title Page
MOPMB049 Beam Experiment of Low Q CBPM Prototype for SXFEL 202
 
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
 
  To meet the high resolution beam position measurement requirement of micron or sub-micron for shanghai soft X-ray free electron laser (SXFEL) under construction, the cavity beam position monitor (CBPM) operating at C-band and the corresponding electronic has been designed by SINAP. In this paper, the design and optimize of the newly low Q cavity BPM is mentioned, the beam test was conducted on the Shanghai Deep ultraviolet free electron laser (SDUV-FEL) facility. CBPM signal processors including broadband oscilloscope and home-made digital BPM processor have been used to evaluate the system performance as well. The beam experimental result, which matched with MAFIA simulation very well, will be presented and discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY007 Application of Embedded Linux Boards in SSRF and SXFEL Control System 4098
 
  • Y.B. Yan, G.H. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, W.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: CAS Key Technology Talent Program and Youth Innovation Promotion Association
The embedded Linux boards, such as Raspberry Pi B+ and Beaglebone Black, are credit-card-sized single-board computer. They are low-cost and equipped with a huge array of GPIO (general purpose input output), which can be used to take readings from sensors and control external devices. The active development community and open-source nature also make them ideal choices for many applications. They can be integrated with the accelerator control system and make more devices 'intelligent' via an economical way. It will be helpful to improve the efficiency of the accelerator. The details of the applications in SSRF and SXFEL control system will be reported in this paper.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB051 Cavity BPM Performance Online Evaluation using PCA Method 208
 
  • Y.B. Leng, L.W. Lai, L.Y. Yu, R.X. Yuan
    SSRF, Shanghai, People's Republic of China
  • J. Chen, Z.C. Chen
    SINAP, Shanghai, People's Republic of China
 
  Funding: NSFS 11575282
This article proposes a new test method to evaluate the performance of cavity beam position monitors using the actual beam as the exciting signal. The new method sepa-rates the signals of different modes and improves the measurement accuracy by eliminating unwanted cou-plings from other sources.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)